

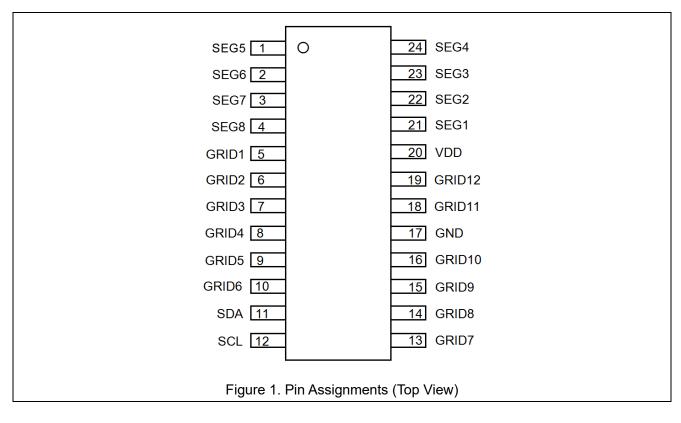
ET6930 - Constant Current Array LED Controller

General Description

ET6930 is designed for LED display with 96 dots constant current driver. The standard I²C communication protocol is adopted. Internal integration of communication interface, data latch, LED constant current drive module. Especially suitable for small LED display driver, with high brightness, constant output current and other characteristics.

Features

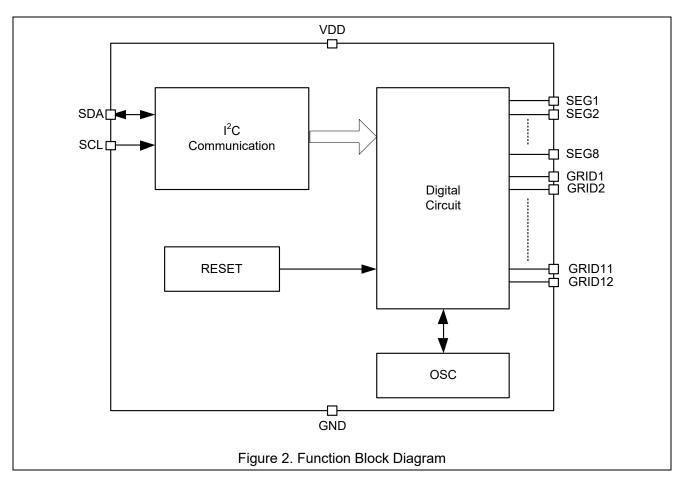
- Up to 96 LEDs are supported
- Support 1~12 scan application, the maximum application matrix is 8 ×12 (8 SEG × 12 GRID)
- Output constant current driver
- 8 levels of brightness adjustment
- I²C communication interface
- Built in RC oscillation
- Built in power on reset
- Package: SSOP24 (ET6930S)


Device Information

Part No.	Package	Size
ET6930S	SSOP24	8.65mm × 6.0mm

Application

- Household appliances, Toy display
- Smart portable devices, Smart audio


Pin Assignments

Pin Description

Symbol	Pin number	Description
SEG1~SEG8	21-24 1-4	Segment output,
3EG1~3EG0	21~24,1~4	connected to LED positive pole
GRID1~GRID12	5~10,13~16,18,19	Grid output,
GRID I~GRID IZ	5~10,15~10,10,19	connected to LED negative pole
SDA	11	l ² C data input
SCL	12	I ² C clock input
GND	17	Ground
VDD	20	Power supply

Function Block Diagram

Functions Description

Introduction

ET6930 is a constant current driver IC for LED display panel based on I^2C communication protocol. It supports up to 8 Segs × 12 Girds output, and can adjust the number of scanning Grids through register configuration, so as to obtain larger single point drive current.

The traditional LED display panel constant voltage drive IC, when the number of lit led changes or the power supply voltage changes, the current of a single LED will change, which will affect the display effect and ET6930 adopts the constant current drive design, when the display mode is configured, the current of each LED will be constant, and will not fluctuate due to the number of lit led changes or the power supply voltage changes.

Serial Port Interface (I²C)

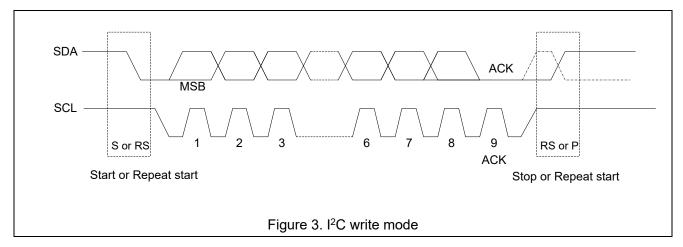
Bus Interface

MCU can transmit data with ET6930 each other through SDA and SCL port. SDA and SCL composite bus interface, and a pull-up resistor to the power supply should be connected.

Data Validity

When the SCL signal is HIGH, the data of SDA port is valid and stable. Only when the SCL signal is low, the level on the SDA port can be changed.

Start (Re-start) and Stop Working Conditions


When the SCL signal is high, SDA signal from high to low represents start or re-start working conditions, while the SCL signal is high, SDA signal from low to high represents stop working conditions.

Byte format

Each byte of data line contains 8 bits, which contains an acknowledge bit. The first data is transmitted MSB.

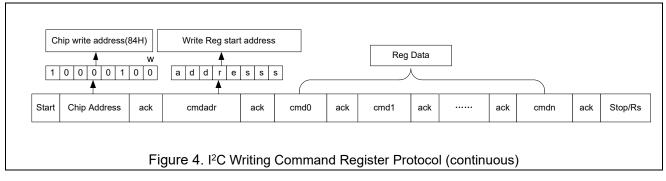
Acknowledge

During the writing mode, ET6930 will send a low level response signal with one period width to the SDA port. During the reading mode, ET6930 will not send response signal and the host will send a high response signal one period width to the SDA.

Note: ACK=Acknowledge

MSB=Most Significant Bit

S=Start Conditions RS=Restart Conditions P=Stop Conditions


Fastest Transmission Speed =400KBITS/S

Restart: SDA-level turn over as expressed by the dashed line waveform

Chip-Address

Chip-Address	Description
84H(10000100B)	Only write mode is supported


I²C Writing Command Register Interface Protocol (continuous):

• Start = Start Conditions

- Chip Address = Write register address = 10000100
- ack = Acknowledge from ET6930
- Write Reg start address byte = cmdadr (REG's 8bit address)
- ack = Acknowledge from ET6930
- Command Reg data 0=cmd0(Command data)
- ack = Acknowledge from ET6930
-
- Command Reg data n=cmdn(Command data)
- ack = Acknowledge from ET6930
- Stop/Rs=Stop Condition/Restart Condition

I²C Writing Command Register Interface Protocol (single):

- Start =Start Conditions
- Chip Address = Write register address = 10000100
- ack = Acknowledge from ET6930
- Write Reg start address byte = cmdadr(REG's 8bit address)
- ack = Acknowledge from ET6930
- Command Reg data =cmd(Command data)
- ack = Acknowledge from ET6930
- Stop/Rs=Stop Condition/Restart Condition

Register Map

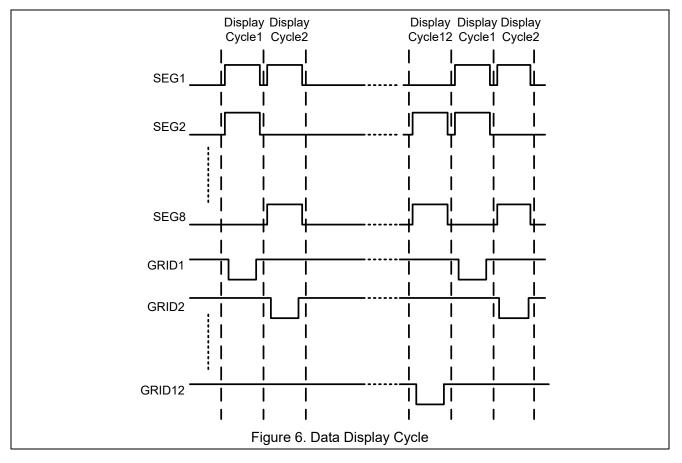
Addr	Description
00H~0BH	Display Data Register
10H~11H	Display Mode Register
12H	Status Control Register

Display Data Register

These register stores the display data of ET6930, with the address from 00H to 0BH, a total of 12 byte units, corresponding to the LED lights of the matrix connected to the SEGn and GRIDn pins respectively.

Addr	Parameter	Description	Defalt Value
00H	GRID1 Data	Grid1data<7:0> Corresponding control SEG8~SEG1	00H
01H	GRID2 Data	Grid2data<7:0> Corresponding control SEG8~SEG1	00H
02H	GRID3 Data	Grid3data<7:0> Corresponding control SEG8~SEG1	00H
03H	GRID4 Data	Grid4data<7:0> Corresponding control SEG8~SEG1	00H
04H	GRID5 Data	Grid5data<7:0> Corresponding control SEG8~SEG1	00H
05H	GRID6 Data	Grid6data<7:0> Corresponding control SEG8~SEG1	00H
06H	GRID7 Data	Grid7data<7:0> Corresponding control SEG8~SEG1	00H
07H	GRID8 Data	Grid8data<7:0> Corresponding control SEG8~SEG1	00H
08H	GRID9 Data	Grid9data<7:0> Corresponding control SEG8~SEG1	00H
09H	GRID10 Data	Grid10data<7:0> Corresponding control SEG8~SEG1	00H
0AH	GRID11 Data	Grid11data<7:0> Corresponding control SEG8~SEG1	00H
0BH	GRID12 Data	Grid12data<7:0> Corresponding control SEG8~SEG1	00H

Display Mode Register

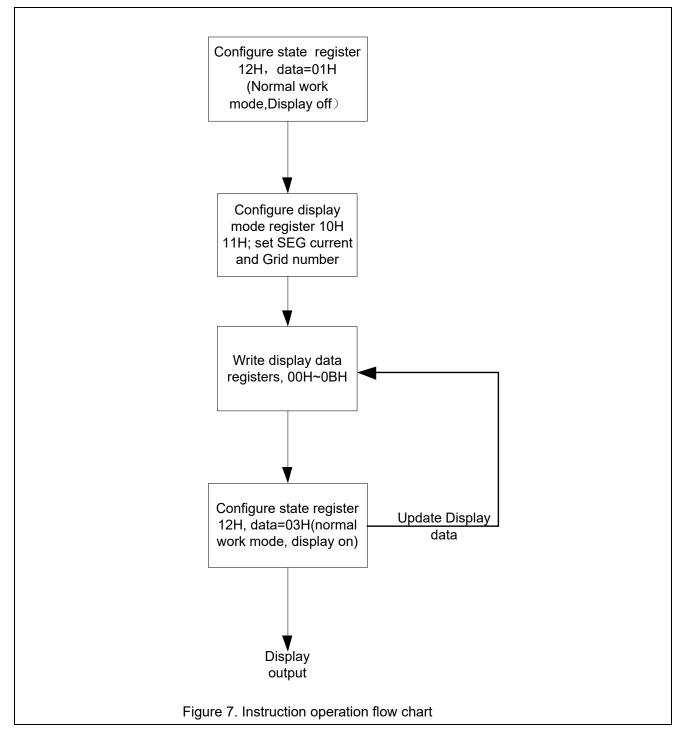

	Addr: 10h	Reset Register						
Addr	Bit	Bit Name	Default	Access	Description			
	7:4	-	0000	-		-		
					SEG	port output constant current		
		0111	35mA					
10H	3:0	Prightnoop		W	0110	30.6mA		
	3.0	Brightness	-	vv	0101	26.25mA		
					0000	4.37mA		
	Addr: 11h				Reset	Register		
Addr	Bit	Bit Name	Default	Access		Description		
	7:4	-	0000	-		-		
					Num	ber of valid GRID scan rows		
					1011	12 row		
11H	3:0	Scan rows		W	1010	11 row		
	5.0	Scarrows	-	vv	1001	10 row		
					0000	1 row		

Note: The display mode reg should be configured after power on.

Status Control Register

	Addr: 12h			Reset Register			
Addr	Bit	Bit Name	Default	Access	Description		
	0 Shutdown		0	W	0	Shutdown	
	0	Shutdown	0	vv	1	Operating mode	
12H	1	Status	0	W	0	Display off	
	1	control		vv	1	Display on	
	7:2	-	000000	-	-	Set to 0 please	

Display Cycle


Command Sequence

When power on for the first time, the state control register (12H) needs to be configured as 01h (that is, the circuit enters the normal working state).

Register writing order: state control register \rightarrow display mode register \rightarrow display data register \rightarrow state control register.

Note: Once bit0 of the state control register is set to 0, when re-writing data, be sure to configure the state control register to 01h before performing other operations.

Absolute Maximum Ratings

(Unless otherwise noted ,T_A = $25^{\circ}C$,GND = 0V)

Symbol	Parameter name	Condition	Value	Unit
Vdd	Supply Voltage		-0.3 ~ 6.0	V
los	SEG drive current	V _{DD} =5V, T _A =25°C	-72	mA
log	GRID drive current	V _{DD} =5V, T _A =25°C	600	mA
PD	Max power deterioration		500	mW
θ _{JA}	Thermal resistance	SSOP24	128	°C/W
TA	Junction temperature		-40~150	°C
T _{STG}	Store temperature		-65~150	°C

Recommended Operating Range

(Unless otherwise noted $,T_A = 25^{\circ}C,GND = 0V)$

Symbol	Parameter	Min.	Тур.	Max.	Unit
V _{DD}	Supply Voltage	4.5	5.0	5.5	V
I _{DD}	Operate current			250	mA
VIH	Input high voltage	$0.7V_{DD}$	-	V _{DD}	V
VIL	Input low voltage	0	-	0.3V _{DD}	V
T _A	Operate temperature	-40		85	°C

DC Electrical Characteristics

(Unless otherwise noted $,T_A = 25^{\circ}C,GND = 0V$)

Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Unit
		$V_{DD} = 5V$				
Iseg	High level output current	$V_0 = V_{DD}-1V$,	-31.5	-35	-38.5	mA
		'10H' write 0x7				
I _{OUT}	Low level output current	V ₀ = 0.8V		560	-	mA
I _{IN}	Input current	$V_I = V_{DD}$	-	-	±1	uA
VIH	High level input voltage	SDA, SCL	0.7V _{DD}	-	-	V
VIL	Low level input voltage	SDA, SCL	-	-	0.3V _{DD}	V
V _H	Hysteresis voltage	SDA, SCL	-	0.35	-	V
IDDDYN	Dynamic current deterioration	No load, display off	-	-	1	mA
ISHDN	Shutdown current	Shutdown enable			10	uA

-

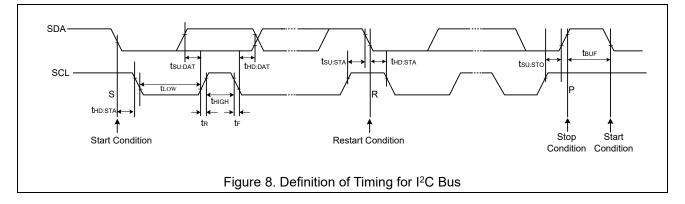
AC Electrical Characteristics

Symbol Parameter **Test Condition** Min. Тур. Max. T_{ZH1} SEG1~8,CL=300pF **Rising time** 2 --0.5 T_{ZH2} **Rising time** GRID1~12,CL=300pF --CL=300pF, SEGn, GRIDn

(Unless otherwise noted, $V_{DD} = 5V$, GND = 0V, $T_A = 25^{\circ}C$)

I²CTiming Characteristics

Dropping time


Tzн

(Unless otherwise noted, $V_{DD} = 5V$, GND = 0V, T_A=25°C)

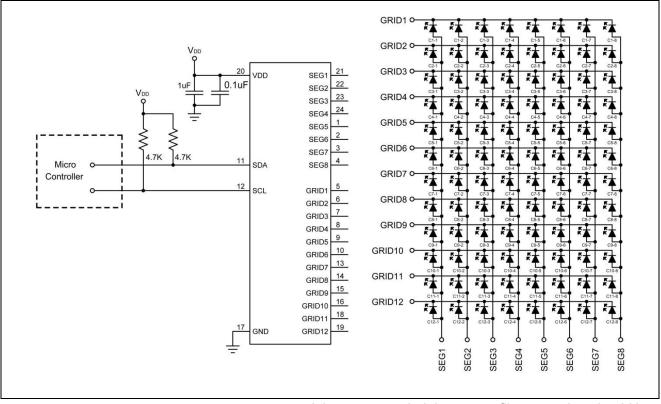
Symbol	Parameter	Min	Тур	Max	Unit
F _{SCL}	SCL Clock Frequency	-	-	400	KHz
t _{BUF}	Bus Free Time Between STOP and START Condition	1.3	-	-	μs
t _{HD:STA}	t _{HD:STA} Hold Time(Repeated) START Condition		-	-	μs
t _{LOW}	w Low Period of SCL Clock		-	-	μs
tніgн	GH High Period of SCL Clock		-	-	μs
tsu:sta	STA Setup Time for a Repeated START Condition		-	-	μs
t _{HD:DAT}	HD:DAT Data Hold Time		-	0.9	μs
t _{SU:DAT}	SU:DAT Data Setup Time		-	-	ns
t _R	Data Hold Time2		20+0.1Cb ⁽¹⁾	300	ns
t⊧	Data Hold Time2		20+0.1Cb ⁽¹⁾	300	ns
tsu:sто	Setup Time for STOP Condition	0.6	-	-	μs

Note1 : Cb=total capacitance of one bus line in PF.

I²C Timing Waveform

Unit

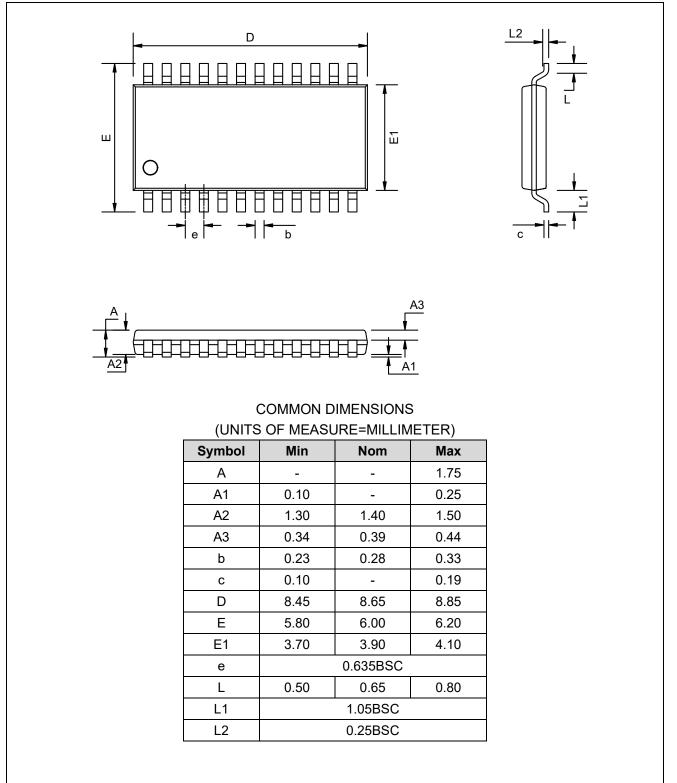
us


us

us

120

-


Application circuit

Note: This application circuit is only for reference, It is recommended that power filter capacitor should be close to the V_{DD} pin as far as possible.

Package

SSOP24

Revision History and Checking Table

Version	Date	Revision Item	Modifier	Function & Spec Checking	Package & Tape Checking
1.0	2020-02-24	Original Version	Shi Liang Jun	Shi Liang Jun	Zhu Jun Li
1.1	2020-04-01	Updated Form	Shibo	Shi Liang Jun	Zhu Jun Li
1.2	2022-07-23	Updated Form	Shibo	Shi Liang Jun	Liujy