Common Anode of 7 Segments- 4 Bits LED Driver

General Description

ET1651 is a special circuit for LED driver control with keyboard scanning interface, which integrates MCU digital interface, data latch, LED high voltage driver, keyboard scanning and other circuits, which can drive up to 28 LED and support common anode digital tube.

Mainly used in induction cooker, microwave oven and small household appliances display driver.

Features

- Power CMOS technology
- Display mode (7 segments × 4 bits), supports up to 28 LED and Co-anode nixie tube output
- Keyboard scanning (1×7bit)
- Brightness adjustment circuit (duty cycle 8 level adjustable)
- 2-wire serial interface (CLK, DIO)
- Built in RC oscillation
- Built in power on reset
- Built in automatic blanking circuit
- Package: SOP16

Pin Assignments

Pin. Function

Pin No.	Symbol	Description
1	GND	Ground
2	SG1	Segment output (Key scan), connected LED negative pole.
3	SG2	Segment output (Key scan), connected LED negative pole.
4	SG3	Segment output (Key scan), connected LED negative pole.
5	SG4	Segment output (Key scan), connected LED negative pole.
6	SG5	Segment output (Key scan), connected LED negative pole.
7	SG6	Segment output (Key scan), connected LED negative pole.
8	SG7	Segment output (Key scan), connected LED negative pole.
9	DIG4	Bit output, connected LED positive pole.
10	DIG3	Bit output, connected LED positive pole.
11	DIG2	Bit output, connected LED positive pole.
12	DIG1	Bit output, connected LED positive pole.
13	VDD	Power supply.
14	סוס	Input data that changes at CLK low levels and transmitted at CLK high levels,
14	DIO	each byte transmitted generates an ACK on the ninth clock.
15	CLK	Input/output data at rising edge.
16	K1	The data entered into the pin is latched after the end of the display cycle,
10	K1	K1 build in a pull up resistance.

Functions Description

Read key scan data

The key scan matrix of ET1651 is composed of 7×1 bit array:

	SG1	SG2	SG3	SG4	SG5	SG6	SG7
K1	1110_1111	0110_1111	1010_1111	0010_1111	1100_1111	0100_1111	1000_1111

Note: When no key is pressed, the read key data is 1111_111, with the low position in the front and the high position in the back.

Interface Description

Data from the microprocessor communicates with the ET1651 via a two-wire bus interface. When the data is input, the signal on DIO must remain unchanged when the CLK is high voltage. The signal on DIO can only change if the clock signal on CLK is at low level. When the initial condition of data input is high voltage CLK, DIO changes from high to low. The end condition is that DIO changes from low level to high level when CLK is high.

ET1651 data transmission with a response signal ACK, during the transmission of data, at the ninth clock of the clock line, the chip will generate an response signal ACK to pull down the DIO pin.

Data transmission (read key data time sequence):

Command: Read key instruction.

S0, S1, S2, K1 constitute the key code, S0, S1, S2 are the SG code.

Write SRAM data addresses automatically increase by 1 mode

Command1: Set data command

Command2: Set data address

Data1~N: Transfers display data to the address following the Command2

Command3: Displays control commands

Serial data transmission in fixed address mode

Command1: Set data command

- Command2: Set display address 1
- date1: Transfer display data to Command2 address
- Command2: Display address n
- dateN: Transmit display data to the last Command2 address
- Command3: Display control command

Data Command

The command is used to set the display mode and LED driver status.

The first byte entered by DIO after the CLK falling edge serves as an instruction. After decoding, take the highest B7, B6 two digits to distinguish different instructions

B7	B6	Description
0	1	Data command setting
1	0	Display control command Settings
1	1	Address command setting

Data Command Setting

This command is used to set data write or read. Bits B1 and B0 cannot be set to 01 or 11.

B7	B6	B5	B4	B3	B2	B1	B0	Function	Description
0	1	0	0			0	0	Data read/write mode	Display data input mode
0	1	0	0			1	0	setting	Read key scan data
0	1	0	0		0			Address add made astting	Automatic address increment
0	1	0	0		1			Address add mode setting	Fixed address
0	1	0	0	0				Test mode Settings	Normal mode
0	1	0	0	1				(internal use)	Test mode

Address Command Setting

B7	B6	B5	B4	B3	B2	B1	B0	Display Address
1	1	0	0	0	0	0	0	00H
1	1	0	0	0	0	0	1	01H
1	1	0	0	0	0	1	0	02H
1	1	0	0	0	0	1	1	03H

This instruction is used to set the display register address; If the address is set to 0C4H or higher, the data is ignored until the valid address is set. During power-on, the default address is 00H.

Display Control Setting

B7	B6	B5	B4	B 3	B2	B1	B0	Function	Description
1	0	0	0		0	0	0		Duty cycle is 1/16
1	0	0	0		0	0	1	Display duty cycle setting	Duty cycle is 2/16
1	0	0	0		0	1	0		Duty cycle is 4/16
1	0	0	0		0	1	1		Duty cycle is 10/16
1	0	0	0		1	0	0	Display duty cycle setting	Duty cycle is 11/16
1	0	0	0		1	0	1		Duty cycle is 12/16
1	0	0	0		1	1	0		Duty cycle is 13/16
1	0	0	0		1	1	1		Duty cycle is 14/16
1	0	0	0	0				Display ON/OFF actting	Display OFF
1	0	0	0	1				Display ON/OFF setting	Display ON

Display and key scan cycle

Absolute Maximum Ratings

Symbol	Characteristic	Test Condition	Rating	Unit
Vdd	Supply Voltage		-0.5~+7.0	V
Vio	Logic Input Voltage		-0.5~V _{DD} +0.5	V
I _{O1}	SEG Driver Output Current	$V_{DD} = 5V$	-50	mA
lo2	GRID Driver Output Current	$V_{DD} = 5V$	200	mA
PD	Power Dissipation		400	mW
TJ	Operating Junction Temperature		-40 ~ 150	°C
Tstg	Storage Temperature		-65 ~ 150	°C

Recommended Operating Conditions

Symbol	Characteristic		Unit		
Symbol	Characteristic	Min	Тур	Мах	Unit
Vdd	Supply Voltage	3.0	5.0	5.5	V
VIH	High Level Input Voltage	0.7V _{DD}		V _{DD}	V
VIL	Low Level Input Voltage	0		0.2V _{DD}	V
TA	Operating Temperature	-40		+85	°C

Electrical Characteristics

(Unless otherwise noted: T_A = -40°C~ 85°C, V_{DD} = 4.5V~ 5.5V, GND=0V)

Symbol	Characteristic	Test Condition	Min	Тур	Мах	Unit
V _{DD}	Supply Voltage		3.0	5.0	5.5	V
la	Low Level Output	SEG1~SEG7,	20	25	40	mΑ
IOL1	Current	$V_0 = 2V$	-20	Typ Max 5.0 5.5 -25 -40 -30 -50 140 -50 15 5 0 21/pp	ША	
la a	Low Level Output	SEG1~SEG7,	20	20	50	~^
IOL2	Current	$V_0 = 3V$	-20	-30	-50	ША
laur	High Level Output	DIG1~DIG4	80	140		mA
IOH1	Current	$V_0 = V_{DD} - 2V$	00	140		
loour	Low Level Output		4			m۸
IDOUT	Current	Vo -0.4V, DOUT	4			ША
Italiaa	High Level Output	$V_0 = V_{DD} - 2V$			5	0/
HOLSG	Current Error	DIG1~DIG4			5	70
R∟	Pull-up Resistor	K1		15		KΩ
V	High Level		0.7\/			N/
VIH	Input Voltage	CLK, DIO	U.7VDD			V
Ma	Low Level				0.21/	V
VIL	Input Voltage	ULK, DIU			U.ZVDD	V

Electrical Characteristics (Continued)

(Unless otherwise noted: T_A = -40°C~ 85°C, V_{DD} = 4.5V~ 5.5V, GND=0V)

Symbol	Characteristic	Test Condition	Min	Тур	Max	Unit
V _H	Lagging Voltage	CLK, DIO		0.35		V
lı	Input Current	$V_I = V_{DD} / GND$			±1	uA
IDD	Dynamic Current	No load, display off			5	mA

Switching parameter

(Unless otherwise noted: T_A = -40°C~ 85°C, V_{DD} = 4.5V~ 5.5V)

Characteristic	Symbol	Test Condition	Min	Тур	Max	Unit
Frequency Oscillation	f _{osc}			450		KHz
Transmission	T _{PLZ}	CLK→DIO			300	ns
Delay Time	T _{PZL}	CLK=15pF,R∟=10 KΩ			100	ns
	T _{TZH1}	SEG1~7, C∟=300pF, R∟=1K			2	us
Rising Time	T _{TZH2}	DIG1~4,C∟=300pF, R∟=1K			0.5	us
Falling Time	T _{THZ}	C_L =300pF,SEGn, DIGn, R _L =1K			120	us
Maximum Clock Frequency	F _{max}	Duty cycle is 50%			400	KHz
Input Capacitance	Ci				15	pF

Transformation Characteristic Time Sequence

(Unless otherwise noted: T_A = -40°C~ 85°C, V_{DD} = 4.5V~ 5.5V)

Characteristic	Symbol	Test Condition	Min	Тур	Max	Unit
Clock-pulse Width	PW _{CLK}		400			ns
Data Setup Time	T _{setup}		100			ns
Data Hold Time	T_{hold}		100			ns
Waiting Time	T _{wait}	CLK↑→CLK↓	1			us

Time sequence

Application circuit

Notes:

- 1. This application circuit is only for reference.
- **2.** C1 = 1uF and should be placed as close as possible to the VDD.
- **3.** R1,R2 = 4.7kΩ, R3,R4 = 100Ω, C2,C3 = 100pF;

4. The series resistance of the communication port and the GND capacitor are placed as close as possible to ET1651, and the resistance value and capacitance value can be adjusted according to the actual anti-interference requirements and verification results.

ET1651

Package

SOP16

Revision History and Checking Table

Version	Date	Revision Item	Modifier	Function & Spec Checking	Package & Tape Checking
1.0	2020-02-19		Shilj	Shilj	Zhujl
1.1	2022-12-15	Specification document format	Shibo	Shilj	Shibo
1.2	2024-4-26	Updated formatting	wuyuchen	shibo	Liujy