

Micro-Power Voltage Detectors

General Description

The ET9818A16L is a micro-power voltage detector supervising the power supply voltage level for microprocessors (μ P) or digital systems. It provides internally fixed threshold levels of 1.6V. It features low supply current of 3 μ A.

The ET9818A16L performs supervisory function by sending out a reset signal whenever the V_{DD} voltage falls below a preset threshold level. This reset signal will last the whole period before V_{DD} recovering. Once V_{DD} recovered up crossing the threshold level, the reset signal will be released after a certain delay time.

Features

- Internally Fixed Threshold 1.6V
- High Accuracy ±1.5%
- Low Supply Current 3µA
- No External Components Required
- Quick Reset within 3µs
- Built-in Recovery Delay 10µs
- Low Functional Supply Voltage 0.9V
- N-Channel Open-Drain Output
- Package information:

Part No.	Package	MSL
ET9818A16L	SOT23-3	Level 1

Application

- Computers
- Controllers
- Intelligent Instruments
- Critical µP and µC Power Monitoring
- Portable/Battery-Powered Equipment

Pin Configuration

Pin Function

Pin NO.	Pin Name	Description
1	GND	Ground
2	RESET	Active Low Open-Drain Reset Output
3	VDD	Power Pin

Block Diagram

Characteristic	Symbol	Symbol Min		Unit
Supply Voltage	V _{DD}	-0.3 6		V
Output Voltage	Vout	-0.3 6		V
Input Current	Ivdd		20	mA
Junction Temperature	TJ		+150	°C
Package Thermal Resistance ⁽³⁾	θ _{JA}		250	°C/W
Storage Temperature Range	Tstg	-65	+150	°C
Lead Temperature (Soldering, 10sec.)	TLEAD		260	°C
Power Dissipation	PD		400	mW
Human Body Model, JESD22-A114	±4000		000	V
Charged Device Model, JESD22-C101	ESD ⁽²⁾	±500		V

Absolute Maximum Ratings⁽¹⁾

Note1. Stresses listed as the above "Absolute Maximum Ratings" may cause permanent damage to the device. These are for stress ratings. Functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may remain possibility to affect device reliability.

Note2. Devices are ESD sensitive. Handling precaution recommended.

Note3. θ_{JA} is measured in the natural convection at $T_A = 25^{\circ}C$ on a low effective thermal conductivity test board of JEDEC 51-3 thermal measurement standard.

Recommended Operating Conditions⁽⁴⁾

Characteristic	Symbol	Min	Max	Unit
Supply Voltage	Vdd	0.9	6.0	V
Operating Ambient Temperature	TA	-40	85	°C
Power Dissipation	PD		400	mW

Note4. The device is not guaranteed to function outside its operating conditions.

Electrical Characteristics

Parameter	Symbol	Test Conditions	Min	Тур	Мах	Units
Operating VDD (VOUT) Range	V _{DD}		0.9		6	V
Supply Current	I _{DD}	$V_{DD} = 4.5 V T_A = 27^{\circ} C$		3	8	μA
Reset Threshold	V _{TH}	T _A = 27°C		1.6		V
Threshold Voltage Accuracy	Δντη	T _A = 27°C	-1.5		+1.5	%
V _{DD} Drop to Reset Delay ⁽⁵⁾	t _{RD}	Drop = V _{TH} -125mV		3		μs
Reset Active Time Out Period	t _{RP}	$V_{DD} \ge 1.02 \times V_{TH}$		10		μs
RESET Output	V _{OL1}	0 < V _{DD} < V _{TH} , R-pull up=100k			0.2	V
Voltage Low ⁽⁶⁾	V _{OL2}	V _{DD} = V _{TH} -0.1,I _{SINK} >3.5mA			0.2	v
Livetereeie Width	Manag			0.01*		V
Hysteresis Width	V _{HYS}			VTH		v

Note5. Guaranteed by design and characterization, not a FT item.

Note6. The voltage V_{OL} can be calculated by $V_{OL} = V_{DD} - Ir * R$. Where R is the pull-up resistor and Ir is the current flowing through the pull-up resistor. For typical application (R=100k Ω), V_{OL} is less than 0.2V.

Application Information

Multiple Supplies

Mainly, the pull-up connected to the ET9818A16L will connect to the supply voltage that is being monitored at the IC's VDD pin. However, some systems may use the open-drain output to level-shift from the monitored supply to reset circuitry powered by some other supply.

Benefits of Highly Accurate Reset Threshold

Most μ P supervisor ICs have reset threshold voltages between 1% and 1.5% below the value of nominal supply voltages. This ensures a reset will not occur within 1% of the nominal supply, but will occur when the supply is 1.5% below nominal.

Application Circuit

4

Package Dimension

Revision History and Checking Table

Version	Date	Revision Item	Modifier	Function & Spec Checking	Package & Tape Checking
1.0	2023-10-04	Original version	Huyt Shib	Zhujl	Zhujl