

Low Voltage S-Pole Detection Type

Hall Effect Switch IC

General Description

The ET3712A45BSCLD is a high sensitivity and high-accuracy S Pole detection Hall effect switch IC that operates at a low voltage and low current consumption. The output voltage will be pulled low when this IC detects the S Pole magnetic flux density is larger than operate point(BOPS) and the output voltage will recover to high until the S Pole magnetic flux density is smaller than the release point(BRPS). Using this IC with a magnet makes it possible to detect the open / close status in various applications.

Due to its low voltage operation and low current consumption the ET3712A45BSCLD is suitable for battery powered portable devices such as mobile phones and portable PCs etc.

To achieve a high-density mounting the ET3712A45BSCLD uses a super-small DFN4 package.

Features

- Pole detection: S pole
- Output logic: Active low
- Output form: CMOS output, no external pull-up resistor required
- Operating Point: $B_{OP} = 4.5 \text{ mT typ.}$
- Operating cycle: t_{CYCLE} = 50.85ms typ.
- Current consumption: IDD = typ. 2.0 µA at 1.85 V
- Power supply voltage range: V_{DD} = 1.6 V to 5.5 V
- Operation temperature range: T_A = -40°C to +85°C
- Lead-free (Sn 100%), halogen-free
- Super small DFN4 package

Application

- Open/Close detection for flip mobile phones
- Smart cover for smart phones
- Smart cover for portable PCs, tablet PCs
- Digital video cameras and portable game consoles
- Home appliances

Pin Configuration

Pin Function

Pin No.	Pin Name	Pin Function
1	VDD	Power supply pin
2	VSS	Ground Pin
3	NC	No connection
4	OUT	Output pin

Block Diagram

Functional Description

Applied magnetic flux

The magnetic flux applied to ET3712A45BSCLD should on the vertical direction on marking surface. If not, the horizontal component has no effect to detection. ET3712A45BSCLD is S-pole type detector, the output voltage (V_{OUT}) is inverted when the S type magnetic flux is applied to IC.

Below shows the direction in which magnetic flux should be applied.

Hall sensor Position

The Hall sensor embedded in ET3712A45BSCLD is at the center of IC. As show below, the position of this Hall sensor is located in the area indicated by a circle, the diameter size of which is about 0.3 mm.

Detecting Operation

ET3712A45BSCLD detects magnetic field periodically. When vertical component of the magnetic flux applied to IC exceeds the operating point (B_{OPN} or B_{OPS}) such as the S or N pole of a magnet is moved closer to IC, V_{OUT} changes from "H" to "L". On the contrary, if magnetic flux is lower than the release point (B_{RPN} or B_{RPS}), V_{OUT} changes from "L" to "H".

The relationship between the magnetic flux density and V_{OUT} is shown below.

Operating Current

ET3712A45BSCLD performs the intermittent operation, therefore the average current consumption depends on the current in active mode , the active period (t_{AW}), the current in sleep mode, and sleep period(t_{SL}). The active current is about 1000 µA typically, and 0.5 µA at sleep mode. Please refer to electrical characteristic table for detail.

The time dependency of the current consumption is shown below.

Timing Diagram

The operation timing of this IC is shown below.

Absolute Maximum Ratings

(1A - +25 C unless otherwise specified)							
Symbol		Parameters	Rating	Unit			
Vdd		Power supply voltage	V_{SS} -0.3 ~ V_{SS} +7.0	V			
Іоит		Output current	±1.0	mA			
Vout		Output voltage	$V_{SS} - 0.3 \sim V_{DD} + 0.3$	V			
TA	Oper	ation ambient temperature	-40 ~ +85	°C			
Tstg		Storage temperature	-40 ~ +125	°C			
θ _{JA}	Junction	to-ambient thermal resistance	300	°C/W			
	HBM	ESDA/JEDEC JS-001-2017	±6000	V			
ESD	CDM	ESDA/JEDEC JS-002-2014	±1500	V			
	MM	JESD22-A115C	±300	V			

 $(T_A = +25^{\circ}C \text{ unless otherwise specified})$

Caution: The absolute maximum ratings are rated values exceeding which the product could suffer physical damage. These values must therefore not be exceeded under any conditions.

Electrical Characteristics

(T _A = +25°C,	$V_{DD} = 1$	85 V	unless	otherwise s	necified)
$1_{A} = \pm 25 $ C,	v DD — T	.00 v,	uniess	outerwise s	pecilieu)

Symbol	Parameters	Conditions		Min	Тур	Max	Unit
Vdd	Power supply voltage	-		1.60	1.85	5.50	V
I _{DD}	Current consumption	Average Supply Current			2.0	4.0	μA
Vout Output voltage	Output voltage	CMOS	Output transistor Nch, I _{OUT} = 0.5mA			0.4	V
	Oulput voltage	output	Output transistor Pch, I _{OUT} = −0.5mA	V _{DD} -0.4			V
t _{AW}	Awake mode time				0.05		ms
ts∟	Sleep mode time				50.80		ms
tcycle	Operating cycle	t _{AW} + t _{SL}			50.85	100.00	ms

Magnetic Characteristics

$(T_A = +25^{\circ}C, V_{DD} = 1.85 V, unless otherwise speci$	fied)
--	-------

Parameters		Symbol	Conditions	Min	Тур	Max	Unit
Operation point	S Pole	BOPS		2.5	4.5	6.0	mT
Release point	S Pole	B _{RPS}		2.0	3.5	5.5	mT
Hysteresis width	S Pole	BHYSS	Bhyss= Bops - Brps		1.0		mT

Notes:

*1. Operating points (B_{OPS}):

 B_{OPS} is the value of magnetic flux density triggers the output voltage (V_{OUT}) to low by increasing the S Pole magnetic flux density applied to this IC.

Even when the magnetic flux density is larger than B_{OPS} , V_{OUT} status is held.

*2. Release points (B_{RPS}):

B_{RPS} is the values of magnetic flux density makes the output voltage (V_{OUT}) recover to high by decreasing the S Pole magnetic flux density applied to this IC.

Even when the magnetic flux density is lower than $B_{\text{RPS}},\,V_{\text{OUT}}$ status is held.

*3. Hysteresis widths (B_{HYSS}):

B_{HYSS} is the difference between B_{OPS} and B_{RPS}.

*4. The unit of magnetic density mT can be converted by using the formula 1 mT = 10 Gauss.

Application Circuit

Precautions

- The power supply for this IC should has low impedance, the IC may malfunction due to a supply voltage drop caused by feed through current.
- Power supply voltage rapidly changing may cause IC malfunction.
- Large stress on this IC may affect the magnetic characteristics. Avoid large stress applied to the IC on a board.

Package Dimension

Revision History and Checking Table

Version	Date	Revision Item	Modifier	Function & Spec Checking	Package & Tape Checking	
0.0	2020.10.21	Preliminary Version	Wanggp	Wanggp	Zhujl	
1.1	2019.1.15	Released Version	Wanggp	Wanggp	Zhujl	
1.2	2022.11.2	Update Typeset	Lvds Shib	Wanggp	Zhujl	