

4 Bit 100 Mbps Configurable Level Translator

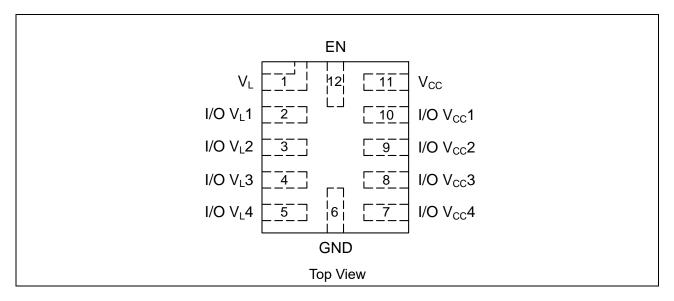
General Description

The ET5014AM is a 4-bit bidirectional level translator in which the input and output ports are switched automatically without direction control. The data path of each channel can be either from I/O_V_n to I/O_V_cn or from I/O_V_cn to I/O_V_n. All of the I/O ports are designed to track two different power supply rails, V_{CC} and V_L respectively. Both of the supply voltage are configurable from 1.1V to 5.0V. The V_{CC} and V_L supplies are independent which allows a logic signal on the V_L side to be translated to either a higher or a lower logic signal voltage on the V_{CC} side, and vice-versa.

The ET5014AM has high output current capability, which allows the translator to drive high capacitive loads such as most high frequency EMI filters. The enable pin(EN) is used to reduce the power consumption. The EN pin can be used to disable both I/O ports by putting them in 3-state which significantly reduces the supply current from both V_{CC} and V_L . The EN signal is referenced to the V_L supply.

ET5014AM operates over an ambient temperature range of -40°C to +105°C.

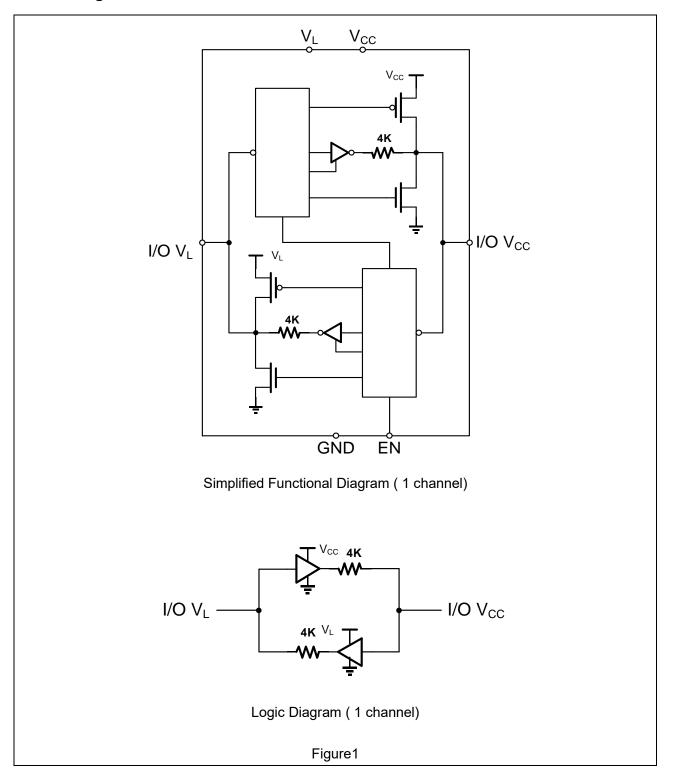
Features


- Wide V_{CC}, V_L Operating Range: 1.1V to 5.0V
- V_L and V_{CC} are Independent
- V_L may be Greater than, Equal to, or Less than V_{CC}
- High 100 pF Capacitive Drive Capability
- High-Speed with 100 Mbps Guaranteed Date Rate for V_{CC}, V_L > 1.8V
- Low Bit-to-Bit Skew
- Over-voltage Tolerant Enable and I/O Pins
- Non-preferential Power Up Sequencing
- Power-Off Protection
- Automotive AEC-Q100 Grade 2 Qualified
- Packaging Information

Part No.	Package	MSL
ET5014AM	QFN12 (1.7 mm x 2.0 mm)	Level 1

Application

- Automotive Infotainment and Cluster
- Automotive Other Devices


Pin Configuration

Pin Function

Pin Number	Pin Name	Description	
11	Vcc	V _{CC} Input Voltage	
1	V _L	V _L Input Voltage	
6	GND	Ground	
12	EN	Output Enable	
7~10	I/O V _{CC} n	I/O Port, Referenced to V _{CC}	
2~5	2~5 I/O V _L n I/O Port, F		

Block Diagram

Function Description

The ET5014AM auto-sense translator provides bi-directional logic voltage level shifting to transfer data in multiple supply voltage systems. These level translators have two supply voltages, V_L and V_{CC} , which set the logic levels on the input and output sides of the translator. When used to transfer data from the I/O V_L to the I/O V_{CC} ports, input signals referenced to the V_L supply are translated to output signals with a logic level matched to V_{CC} . In a similar manner, the I/O V_{CC} to I/O V_L translation shifts input signals with a logic level compatible to V_{CC} to an output signal matched to V_L .

The ET5014AM translator consists of bi-directional channels that independently determine the direction of the data flow without requiring a directional pin. One-shot circuits are used to detect the rising or falling input signals. In addition, the one-shots decrease the rise and fall times of the output signal for high-to-low and low-to-high transitions.

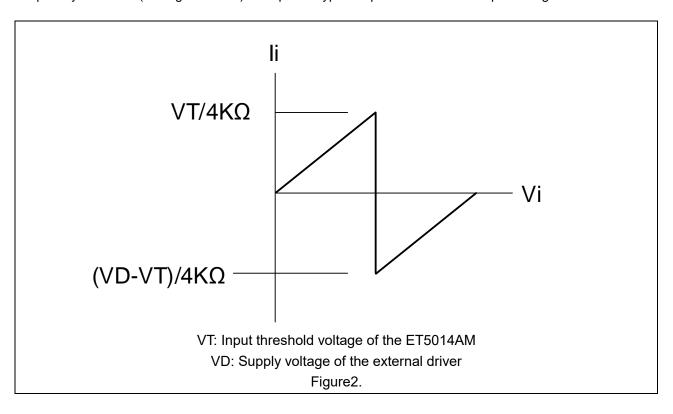
Auto-sense translators such as the ET5014AM have a wide bandwidth, but a relatively small DC output current rating. The high bandwidth of the bi-directional I/O circuit is used to quickly transform from an input to an output driver and vice versa. The I/O ports have a modest DC current output specification so that the output driver can be over driven when data is sent in the opposite direction. For proper operation, the input driver to the auto-sense translator should be capable of driving 2 mA of peak output current. The bi-directional configuration of the translator results in both input stages being active for a very short time period. Although the peak current from the input signal circuit is relatively large, the average current is small and consistent with a standard CMOS input stage.

The ET5014AM translator has an Enable pin (EN) that provides tri-state operation at the I/O pins. Driving the Enable pin to a low logic level minimizes the power consumption of the device and drives the I/O V_{CC} and I/O V_{L} pins to a high impedance state. Normal translation operation occurs when the EN pin is equal to a logic high signal. The EN pin is referenced to the V_{L} supply and has Over-Voltage Tolerant (OVT) protection.

The ET5014AM translator can function as a non-inverting uni-directional translator. One advantage of using the translator as a uni-directional device is that each I/O pin can be configured as either an input or output. The configurable input or output feature is especially useful in applications such as SPI that use multiple uni-directional I/O lines to send data to and from a device. The flexible I/O port of the auto sense translator simplifies the trace connections on the PCB.

The values of the V_L and V_{CC} supplies can be set to anywhere between 1.1V and 5.0V. Design flexibility is maximized because V_L may be either greater than or less than the V_{CC} supply. In contrast, the majority of the competitive auto sense translators has a restriction that the value of the V_L supply must be equal to less than $(V_{CC} - 0.4) V$.

The sequencing of the power supplies will not damage the device during power-up operation. In addition, the I/O V_{CC} and I/O V_{L} pins are in the high impedance state if either supply voltage is equal to 0V. For optimal performance, 0.01uF to 0.1uF decoupling capacitors should be used on the V_{L} and V_{CC} power supply pins. Ceramic capacitors are a good design choice to filter and bypass any noise signals on the voltage lines to the ground plane of the PCB. The noise immunity will be maximized by placing the capacitors as close as possible to the supply and ground pins, along with minimizing the PCB connection traces.


The ET5014AM translators have a power down feature that provides design flexibility. The output ports are disabled when either power supply is off (V_L or $V_{CC} = 0V$). This feature causes all of the I/O pins to be in the power saving high impedance state.

About Pull-Up/Pull-Down Resistors

Do not use any pull-up or pull-down resistors. This device has bus-hold circuits: pull-up or pull-down resistors are not recommended because they interfere with the output state. The current through these resistors may exceed the hold drive's bus-hold current (see figure below), resulting in data transition and/or auto-direction sensing failures. The bus-hold feature eliminates the need for extra resistors.

Input Driver Requirements

For correct operation, the device driving the data I/Os of the ET5014AM must have a minimum drive capability of ±2 mA (see figure below) for a plot of typical input current versus input voltage.

Absolute Maximum Ratings

Symbol	Parameter	Condition	Value	Unit
Vcc	High-side DC Supply Voltage		-0.5 to +5.5	V
VL	Low-side DC Supply Voltage		−0.5 to +5.5	٧
I/O Vcc	V _{CC} -Referenced DC Input/Output Voltage		−0.5 to +5.5	V
I/O VL	V _L -Referenced DC Input/Output Voltage		−0.5 to +5.5	V
Vı	Enable Control Pin DC Input Voltage		-0.5 to +5.5	V
lıĸ	DC Input Diode Current	Vı < GND	-50	mA
Іок	DC Output Diode Current	Vo < GND	-50	mA
Icc	DC Supply Current Through V _{CC}		±100	mA
IL	DC Supply Current Through V _L		±100	mA
I _{GND}	DC Ground Current Through Ground Pin		±100	mA
TJ	Max Junction Temperature		+150	°C
T _{STG}	Storage Temperature		−65 to +150	°C
ESD ^(*)	Human Body Model		±4000	
E9D,	Charged Device Model		±2000	V
LU(*)	Latch up Current Maximum Rating		±300	mA

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

*Note**. This device series incorporates ESD protection and is tested by the following methods:

HBM tested per AEC-Q100-002(EIA/JESD22-A114);

CDM tested per AEC-Q100-011(EIA/JESD22-C101);

Latch up Current Maximum Rating tested per AEC-Q100-004(EIA/JESD78E).

Recommended Operating Conditions

Symbol	Parar	Min	Max	Unit	
Vcc	High-side Positive	DC Supply Voltage	1.1	5.0	V
VL	Low-side Positive	DC Supply Voltage	1.1	5.0	V
Vı	Enable Contro	Enable Control Pin Voltage			
V	Due les thought Veltage	I/O Vcc	GND	5.0	\/
Vio	Bus Input/Output Voltage	I/O VL	GND	5.0	V
TA	Operating Tem	-40	+105	°C	
\(\dagger \dagger \land \land \dagger \land \dagger \	Input Transitio	0	10	20	
△t/△V	V _I , V _{IO} from 30% to 70% o	0	10	ns	

DC Electrical Characteristics

(*Note*: VS is the corresponding supply for IO, i.e. V_{CC} for IO_V_{CC} and V_L for IO_V_L)

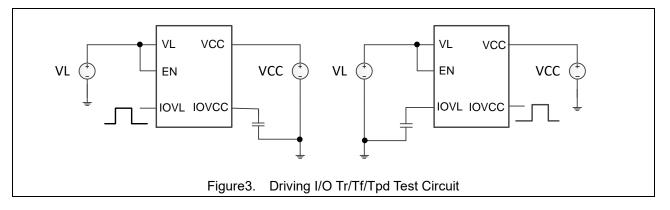
0	B	T4 O414(4)	N/ (2)	N. (2)	-40	°C to +10	5°C	1114
Symbol	Parameter	Test Conditions ⁽¹⁾	V _{CC} (2)	V _L ⁽³⁾	Min	Typ (4)	Max	Unit
VIH	I/O Input HIGH Voltage		1.1-5.0	1.1-5.0	0.65* Vs	-	-	V
VIL	I/O Input LOW Voltage		1.1-5.0	1.1-5.0	-	-	0.35* Vs	V
V _{IH-EN}	Control Pin Input HIGH Voltage	T _A =+25°C	1.1-5.0	1.1-5.0	0.65* Vs	-	-	V
VIL-EN	Control Pin Input LOW Voltage	T _A =+25°C	1.1-5.0	1.1-5.0	-	1	0.35* V _S	V
V _{ОН}	I/O Output HIGH Voltage	I/O source current = 20uA	1.1-5.0	1.1-5.0	Vs-0.2	-	-	>
Vol	I/O Output LOW Voltage	I/O source current = 20uA	1.1-5.0	1.1-5.0	-	-	0.2	V
lα	Static Supply Current	EN = V_L , I_O = 0 A, (I/O-in = 0 V or V_S , I/O-out = float)	1.1-5.0	1.1-5.0	-	-	7.5	uA
ITS	Tristate Output Mode Supply Current	EN = 0 V, (I/O-in = 0 V or Vs, I/O-out = float)	1.1-5.0	1.1-5.0	-	-	7.5	uA
loz	Tristate Output Mode I/O Leakage Current	EN = 0 V	1.1-5.0	1.1-5.0	-	-	±2	uA
I _I	Control Pin Input Current	T _A = +25°C	1.1-5.0	1.1-5.0	-	-	±1	uA
I _{OFF}	Power off Leakage Current	$I/O V_{CC} = 0 \text{ to } V_{CC},$ $I/O V_{L} = 0 \text{ to } V_{L}$	0 1.1-5.0	0	-	-	7.5 7.5	uA
			0	1.1-5.0	-	-	7.5	

Notes:

- 1. Normal test conditions are $V_I = 0$ V, $C_{IOVCC} \le 15$ pF and $C_{IOVL} \le 15$ pF, unless otherwise specified.
- 2. V_{CC} is the supply voltage associated with the I/O V_{CC} port, and V_{CC} ranges from +1.1V to 5.0V under normal operating conditions.
- 3. V_L is the supply voltage associated with the I/O V_L port, and V_L ranges from +1.1V to 5.0V under normal operating conditions.
- **4**. Typical values are for V_{CC} = +2.8V, V_L = +1.8V and T_A = +25°C. All units are production tested at T_A = +25°C. Limits over the operating temperature range are guaranteed by design.

Timing Characteristics

Oh al	Da	4	Took Conditions (5)	V (6)	V (7)	-40	°C to +10	5°C	11
Symbol	Paramet	ter	Test Conditions ⁽⁵⁾	V _{CC} ⁽⁶⁾	V _L (7)	Min	Typ ⁽⁸⁾	Max	Unit
T _R	I/O Rise T	imo	C. =15pE	1.1-5.0	1.1-5.0			9.5	no
IR	I/O INISE TIME	ime	C _{IO} =15pF	1.8-5.0	1.8-5.0			7.5	ns
T _F	I/O Fall T	imo	C _{IO} =15pF	1.1-5.0	1.1-5.0			9.5	no
11-	I/O Fall I	IIIIE	G ₁₀ =15pF	1.8-5.0	1.8-5.0			7.5	ns
Zovcc	I/O V _{CC} One	-Shot	(9)	1.8	1.1-5.0		20		Ω
20000	Output Impe	dance	.,,	5.0	1.1-5.0		6.0		\$2
Z_{OVL}	I/O V _L One-	-Shot	(9)	1.1-5.0	1.8		20		Ω
ZOVL	Output Impe	dance		1.1-5.0	5.0		6.0		\$2
			C _{IOVCC} =15pF	1.1-5.0	1.1-5.0			35	
			Clovcc=15pi	1.8-5.0	1.8-5.0			13	
	Propagation	Dolov	C _{IOVCC} =30pF	1.1-5.0	1.1-5.0			35	
t _{PD}	(Driving I/C	•	Gloved=30pF	1.8-5.0	1.8-5.0			15	ns
(PD			C _{IOVCC} =50pF	1.1-5.0	1.1-5.0			37	115
	or I/O V _L)		Cloved=30pF	1.8-5.0	1.8-5.0			15	
			C _{lovcc} =100pF	1.1-5.0	1.1-5.0			53	
			Clovcc-Toopr	1.8-5.0	1.8-5.0			24	
t sĸ	Channel Channel		C _{IOVCC} =C _{IOVL} = 5pF	1.1-5.0	1.1-5.0			0.15	ns
Iin_peak	Input Dri Maximu Peak Cur	m	I/O_V _{CC} = 1MHz Square Wave, Amplitude =V _{CC} , or I/O_V _L = 1 MHz Square Wave, Amplitude = V _L EN = V _L ; ⁽⁹⁾	1.1-5.0	1.1-5.0			2	mA
t _{EN}	I/O Output Enable	t _{PZH}	C _{IO} = 15 pF, I/O_V _L = V _L	1.1-5.0	1.1-5.0			170	ns
CEN	Time	t _{PZL}	C _{IO} = 15pF, I/O_V _L = 0V	1.1-5.0	1.1-5.0			170	113
t _{DIS}	I/O Output Disable	t _{PHZ}	C _{IO} = 15 pF, I/O_V _L = V _L	1.1-5.0	1.1-5.0			180	ns
נטוס	Time	t _{PLZ}	C _{IO} = 15pF, I/O_V _L = 0V	1.1-5.0	1.1-5.0			175	110


Timing Characteristics (Continued)

Symbol	Parameter	Test Conditions ⁽⁵⁾	V _{CC} (6)	V _L (7)	-40	°C to +10	5°C	Unit
Symbol	Parameter	rest conditions.	V CC (G)	VL***	Min	Typ ⁽⁸⁾	Max	Ullit
			1.1-5.0	1.1-5.0	40			
		C _{IO} =15pF	1.5-5.0	1.5-5.0	80			
		C ₁₀ -15pr	1.8-5.0	1.8-5.0	100			
			2.3-5.0	2.3-5.0	160			
			1.1-5.0	1.1-5.0	40			
		C _{IO} =30pF	1.5-5.0	1.5-5.0	72			
			1.8-5.0	1.8-5.0	94			
	Maximum		2.3-5.0	2.3-5.0	140			
MDR	Data Rate	C _{IO} =50pF	1.1-5.0	1.1-5.0	35			Mbps
	Data Nate		1.5-5.0	1.5-5.0	63			
			1.8-5.0	1.8-5.0	87			
			2.3-5.0	2.3-5.0	120			
			1.1-5.0	1.1-5.0	30			
		C ₁₀ =100pE	1.5-5.0	1.5-5.0	55			
		C _{IO} =100pF	1.8-5.0	1.8-5.0	80			
			2.3-5.0	2.3-5.0	100			

Notes:

- **5**. Normal test conditions are $V_I = 0V$, $C_{IOVCC} \le 15pF$ and $C_{IOVL} \le 15pF$, unless otherwise specified.
- **6**. V_{CC} is the supply voltage associated with the I/O V_{CC} port, and V_{CC} ranges from +1.1V to 5.0V under normal operating conditions.
- **7**. V_L is the supply voltage associated with the I/O V_L port, and V_L ranges from +1.1V to 5.0V under normal operating conditions.
- **8**. Typical values are for $V_{CC} = 2.8V$, $V_L = 1.8V$ and $T_A = 25$ °C. All units are production tested at $T_A = 25$ °C. Limits over the operating temperature range are guaranteed by design.
- 9. Guaranteed by design.

Test Circuit and Timing

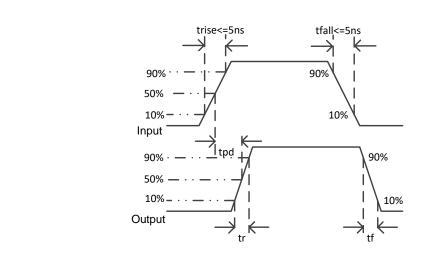
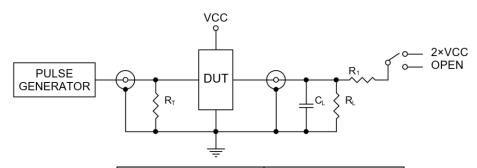



Figure 4. Driving I/O Tr/Tf/Tpd Test Timing

Test	Switch
t _{PZH} , t _{PHZ}	open
t _{PZL} , t _{PLZ}	2 × Vcc

 C_L = 15pF or equivalent (Includes jig and probe capacitance)

 $R_L = R_1 = 50k\Omega$ or equivalent

 $R_T = Z_{OUT}$ of pulse generator (typically 50 Ω)

Figure 5. Enable/Disable Test Circuit

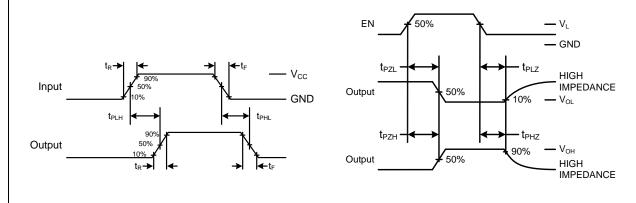
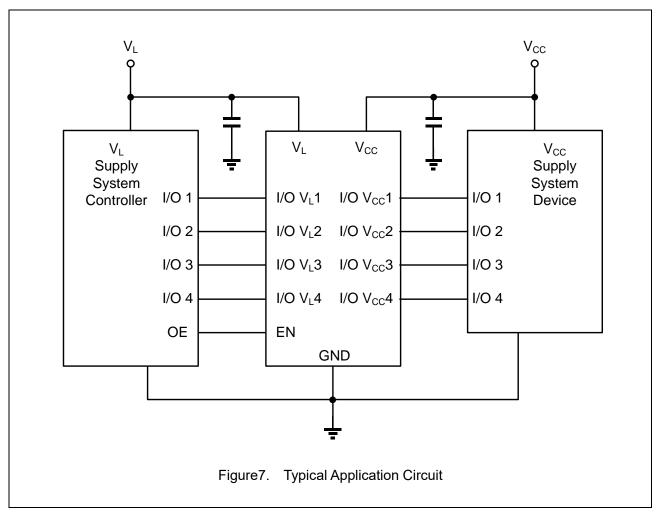
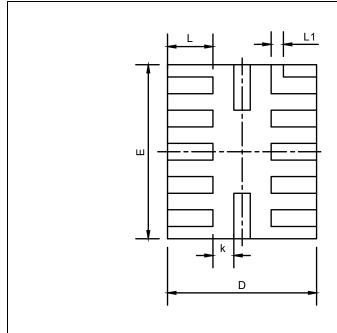
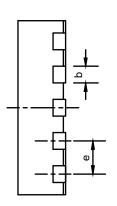
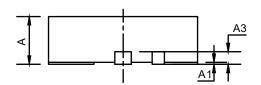



Figure 6. Enable/Disable Test Timeing

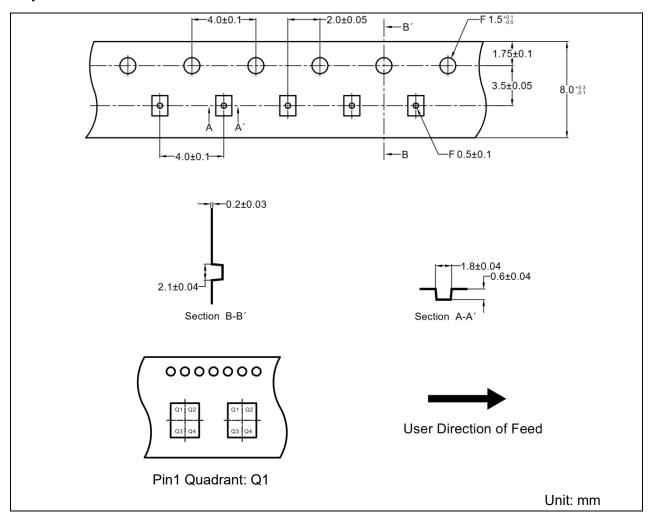

Typical Application Circuits

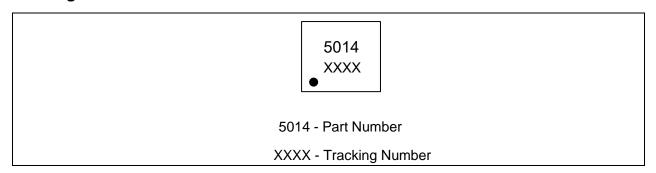



^{*:} This electric circuit only supplies for reference.

Package Dimension

QFN12




COMMON DIMENSIONS (UNITS OF MEASURE=MILLIMETER)

SYMBOL	MIN	MAX		
Α	0.450	0.550		
A1	0.000	0.050		
A3	0.152	2REF.		
b	0.150	0.250		
D	1.600	1.800		
Е	1.900	2.100		
е	0.400) TYP.		
L	0.450	0.550		
L1	0.150 REF.			
k	0.200	MIN.		

Tape Information

Marking

Revision History and Checking Table

Version	Date	Revision Item	Modifier	Function & Spec Checking	Package & Tape Checking
1.0	2022-01-14	Initial Version	Ma Yong Jian	Ma Yong Jian	Zhujl
1.1	2022-06-18	Updated form	Shi bo	Shi Liang Jun	Zhu Jun Li
1.2	2025-03-05	Update EC table	Yangxiaoxu	Gehao	Liujiaying
1.3	2025-04-23	Update EC table	Wanganran	Gehao	Liujiaying