

Octal Buffers/Drivers With 3-State Outputs

General Description

The ET74HCT541V octal buffers/drivers is ideal for driving bus lines or buffer memory address registers. The device feature inputs and outputs on opposite sides of the package to facilitate printed circuit board layout.

The 3-state control gate is a 2-input AND gate with active-low inputs so that if either output-enable(\overline{OE} 1 or \overline{OE} 2) input is high, all corresponding outputs are in the high-impedance state. The outputs provide non-inverted data when they are not in the high-impedance state.

To ensure the high-impedance state during power up or power down, \overline{OE} should be tied to VCC through a pull-up resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

Features

- Designed for 4.5 to 5.5V VCC Operation
- Inputs are TTL Voltage Compatible
- Latch-Up performance > 250mA
- ESD Performance:
 - -- Human Body Model >2000V
 - -- Charged Device Model >1000V
- Part No. and package

Part No.	Package	
ET74HCT541V	TSSOP20 (6.5mm×4.4mm)	

Applications

- Fully compliant with standards for automotive applications
- Combine normal power signals from multiple power rails

Pin Configuration

Pin Function

Pin No.	Name	Description		
1	OE 1	Output Enable 1		
2	A1	Input A1		
3	A2	Input A2		
4	A3	Input A3		
5	A4	Input A4		
6	A5	Input A5		
7	A6	Input A6		
8	A7	Input A7		
9	A8	Input A8		
10	GND	Ground		
11	Y8	Output Y8		
12	Y7	Output Y7		
13	Y6	Output Y6		
14	Y5	Output Y5		
15	Y4	Output Y4		
16	Y3	Output Y3		
17	Y2	Output Y2		
18	Y1	Output Y1		
19	OE 2	Output Enable 2		
20	VCC	Power		

Block Diagram

Functional Description

Function Table

	Output		
OE 1	OE 2	А	Y
L	L	L	L
L	L	Н	Н
Н	Х	Х	Z
X	Н	Х	Z

Note: H = High voltage level ,

L = Low voltage level ,

X = Don't care ,

Z = High-impedance OFF-state.

Absolute Maximum Ratings

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other condition beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Symbol	Parameter	Value	Unit
Vcc	Supply voltage range	-0.5 to 7.0	V
VI	Input voltage range ⁽¹⁾	-0.5 to 7.0	V
Vo	Output voltage range ⁽¹⁾	-0.5 to V _{CC} + 0.5	V
I _{IK}	Input clamp current, V _I < GND	-20	mA
l _{ок}	Output clamp Current $V_0 < GND, V_0 > V_{CC}$	±20	mA
lo	Continuous output current, Io(Vo=0 to Vcc)	±25	mA
lcc	Continuous current through Vcc	±75	mA
	Continuous current through GND	±75	mA
T _{JMAX}	Maximum Junction Temperature	150	°C
PD	Max Power Dissipation (TSSOP20)	400	mW
Tstg	Storage Temperature Range	-65 to 150	°C
	Human Body Model ESD (JESD22-A114)	±2000	v
V _{ESD}	Charged Device Model ESD (JESD22-C101)	±1000	v
ILU	Latch up Current Maximum Rating (JESD78E)	±250	mA

Note1. The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

Recommended Operating Conditions

Symbol	Parameter	Min	Max	Unit
Vcc	Supply voltage	4.5	5.5	V
Vih	High-level input voltage	2	Vcc	V
VIL	Low-level input voltage	0	0.8	V
VI	Input Voltage	0	5.5	V
Vo	Output Voltage	0	Vcc	V
Іон	High-level output current		-8	mA
I _{OL}	Low-level output current		8	mA
TA	Operating Temperature Range	-40	125	°C
Δt/Δv	Input Transition rise or fall rate		20	ns/V

Electrical Characteristics

DC Electrical Characteristics

Symbol	Parameter	Condition V			T _A =25°C		-40°C≤T,	≤125°C	Unit
Symbol	Parameter	Condition	Vcc(V)	Min	Тур	Мах	Min	Max	Unit
V _{OH}	High-Level	I _{он} =-50uA	4.5	4.4	4.5		4.4		V
∨он	Output Voltage	Іон =-8mA	4.5	3.94			3.8		v
Max	Low-Level	I _{он} =-50uA	4 5			0.1		0.1	V
Vol	Output Voltage	I _{он} =-8mA	4.5			0.36		0.44	V
lı lı	Input Leakage	VI=5.5V or	0 to 5.5			±0.1		±1	
II	Current	GND				±0.1			uA
loz	Output Leakage	Vo= V_{CC} or	5.5			±0.25		±2.5	uA
102	Current	GND	0.0			10.20		12.5	
lcc	Quiescent	$V_1 = V_{CC}$ or	5.5			4		40	μA
ICC	Supply Current	GND				4		40	μA
∆lcc ⁽²⁾	One Input a	at 3.4V,	5.5			1.35		1.5	mA
	Other Inputs at V	√cc or GND	5.5			1.55		1.5	ША
Ci	VI=VCC or	GND	5.0		2	10		10	~ Г
Co	Vo=V _{CC} or	GND	5.0		4			10	pF

Note2: This is the increase in supply current for each input at one of the specified TTL voltage levels, rather than 0V or VCC

Switching Characteristics ⁽³⁾

Symbol	Condition	T _A =2	25°C	-40°	C≤T₄≤12	25°C	Unit
Symbol	Condition	Тур	Max	Min	Тур	Max	Unit
t _{PLH}	From A to V. C15nE	4.1	6.0	1.0		6.5	
t _{PHL}	From A to Y, C∟=15pF	4.1	6.0	1.0		6.5	
t _{PZH}	From /OE to Y, C _L =15pF	5.0	7.0	1.0		8.0	
t _{PZL}		5.0	7.0	1.0		8.0	
t _{PHZ}	From /OE to Y, C∟=15pF	4.5	7.0	1.0		8.0	
t _{PLZ}		4.5	7.0	1.0		8.0	ne
t _{PLH}	From A to V. C 50nE	6.2	8.5	1.0		9.5	ns
t _{PHL}	From A to Y, C∟=50pF	6.2	8.5	1.0		9.5	
t _{PZH}	From OF to V. C FORF	7.5	10.0	1.0		12.0	
t _{PZL}	From /OE to Y, C∟=50pF	7.5	10.0	1.0		12.0	
t _{PHZ}	From OF to V. C FORF	7.0	10.0	1.0		12.0	
t _{PLZ}	From /OE to Y, C∟=50pF	7.0	10.0	1.0		12.0	

Note3. Guaranteed by design and characterization. not a FT item.

ET74HCT541V

AC Characteristics Test Waveform

Note A: C_{L} includes probe and jig capacitance.

Note B: Figure 5 is for an output with internal conditions such that the output is low except when disable by the output control. Figure 6 is for an output with internal conditions such that the output is high except when disable by the output control.

Capacitance Characteristics

Symbol	Parameter	Condition	Тур	Unit
C _{PD} ⁽⁴⁾	Power Dissipation Capacitance	1MHz,V _{CC} = 5.0 V, T _A =25°C,No load	12	pF

Note4. C_{PD} is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load.

Package Dimension

TSSOP20

Revision History and Checking Table

Version	Date	Revision Item	Modifier	Function & Spec Checking	Package & Tape Checking
0.0	2023-10-20	Initial version	Shibo	Luh	Liujy