

40 V, 12 MHz, Zero-Drift Op Amp

General Description

ET85911 is the newest high supply voltage amplifier with 15 μ V low offset, low noise, and stable high-frequency response. It incorporates ETEK's proprietary and patented design techniques to achieve excellent AC performance with 12 MHz bandwidth, 12 V/ μ s slew rate, and low distortion while drawing only 2000 μ A of quiescent current per amplifier. The input common-mode voltage range extends to V-, and the outputs swing rail-to-rail.

ET85911 has an over-temperature protection feature to guarantee chip safety. The output of ET85911 will enter high impendence when the die temperature reaches around 170°C and will recover the function when the die temperature is down to around 150°C. The product has a very small power temperature coefficient, which is helpful for temperature-sensitive applications.

Features

- Supply Range: 4.5 V ~ 40 V or ±2.25 V ~ ±20 V
- Offset Voltage: ±15 µV Maximum
- Input Rail to -Vs, Rail to Rail Output
- Gain Bandwidth: 12 MHz
- Slew Rate: 12 V/µs
- Over-Temperature Protection
- Low Noise: 6 nV/√Hz at 1 kHz
- 2 kV HBM, 1 kV CDM
- -40°C to 125°C Operation Temperature Range

Applications

- Instrumentation
- Active Filters, ASIC Input or Output Amplifier
- Sensor Interface
- Motor Control
- Industrial Control
- Low noise power supply

Device information

Part No.	Package Tape / Reel	
ET85911M	SOP8	Tape and Reel

Pin Configuration

Pin Function

Pin Number	Symbol	Descriptions		
ET85911M	Symbol	Descriptions		
2	-IN	Inverting input		
3	+IN	Non-inverting input		
4	V-	Negative supply		
6	OUT	Output		
7	V+	Positive supply		
1,5,8	NC	NC		

Absolute Maximum Ratings

Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are only stress ratings, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating conditions are not implied. Exposure to absolute maximum rated conditions for extended periods may affect device reliability.

Symbol	Rating	Value	Unit
Vs	Supply Voltage: (V+) - (V-)	0 ~ 42	V
V _{IN}	Signal input terminals Voltage	(V-) -0.3 ~ 42	V
VID	Differential Input Voltage	(V-) - (V+) ~ (V+) - (V-)	V
Vout	Output Voltage	(V-) - 0.3 ~ (V+) + 0.3	V
I _{IN}	Input Current: +IN, -IN ⁽¹⁾	-10 ~ +10	mA
Isc	Output Short-Circuit Duration ⁽²⁾	Infinite	
T _{J(MAX)}	Maximum Junction Temperature	+150	°C
T _A	Operating Temperature Range	-40 ~ +125	°C
T _{STG}	Storage Temperature	-65 ~ +150	°C
M	HBM Max Capability(Human Body Model)	±2000	V
VESD	CDM Max Capability(Charged Device Model)	±1000	V

Note1: The inputs are protected by ESD protection diodes to the negative power supply. If the input extends more than 300 mV beyond the negative power supply, the input current should be limited to less than 10 mA. **Note2**: A heat sink may be required to keep the junction temperature below the absolute maximum. This depends on the power supply voltage and how many amplifiers are shorted. Thermal resistance varies with the amount of PC board metal connected to the package. The specified values are for short traces connected to the leads.

Recommended Operating Conditions

Symbol	Characteristic	Value	Unit
Vs	Supply Voltage: (V+) - (V-)	4.5 (±2.25) ~ 40 (±20)	V
T _A	Operating Temperature Range	-40 ~ +125	°C

Electrical Characteristics

All test condition is $V_S = 30 \text{ V}$, $T_A = 25^{\circ}\text{C}$, $R_L = 10 \text{ k}\Omega$, unless otherwise noted.

Symbol	Parameter	Conditions		Min	Тур	Max	Unit	
Power	Supply		I		•			
Vs	Supply Voltage Range			4.5		40	V	
		V _S = 40 V			2.4	3	mA	
		Quiescent Current	V _S = 30 V			2	2.5	
lq	Quiescent Current per Amplifier	vs – 30 v	-40°C to 125°C			2.7	mA	
		V _S = 5 V			1.9	2.4	mA	
		vs – 5 v	-40°C to 125°C			2.6	ША	
PSRR	Power Supply	V _S = 4.5 V to 36 V		135	155		dB	
FORR	Rejection Ratio	vs – 4.5 v to 50 v	-40°C to 125°C	130			uБ	
Input C	haracteristics							
		V _S = 40 V, V _{CM} = 20 V		-15		15		
	Input Offset Voltage	V _S = 30 V,		-15		15		
Vos		V _{CM} = 15 V	-40°C to 125°C	-25		25	μV	
		Vs = 5 V,		-15		15		
		V _{CM} = 2.5 V	-40°C to 125°C	-25		25		
dV _{os} /dT	Vos VS Temperature	-40°C to ²	125°C		0.05	0.15	µV/°C	
					10			
IB	Input Bias Current	-40°C to 1	125°C		100		pА	
los	Input Offset Current				100		pА	
		V _S = 36 V,				100		
l _{in}	Different Input Current	V _{ID} = 36 V	-40°C to 125°C			120	μA	
0		Differentia			5		pF	
CIN	Input Capacitance Common		Mode		2.5			
•	Open-loop Voltage	R _L = 10 kΩ, V _{OUT} =		135	155		-10	
Aol	Gain	0.5 V to 29.5 V	-40°C to 125°C	130			dB	
V _{CM}	Common-mode			(ΛI)		(V+) -1.5	V	
V CM	Input Voltage Range			(V-)		(v+)-1.5	v	
CMRR	Common-mode	$V_{\rm CM} = 0 V to 28.5 V$		135	155		dB	
CMRR	Rejection Ratio	$V_{CM} = 0 V \text{ to } 28.5 V$ -40°C to 125		130			чD	

Electrical Characteristics (Continued)

Symbol	Parameter	Conditi	ons	Min	Тур	Max	Unit
Output	Characteristics						
		R_L = 100 k Ω to V _S /2			12	25	-
			-40°C to 125°C			40	
	Output Swing from	R_L = 10 k Ω to V _S /2			80	120	
V _{он}	Positive Rail		-40°C to 125°C			200	mV
		$R_L = 2 k\Omega$ to $V_S/2$			370	500	-
		$R_{\rm L} = 2 \text{ KM to } V_{\rm S}/2$	-40°C to 125°C			750	-
		$D_{\rm r} = 400 k0 t_{\rm r} V_{\rm r} / 2$			5	25	
		R_L = 100 k Ω to V _S /2	-40°C to 125°C			30	-
V	Output Swing from Negative Rail	R_L = 10 k Ω to V _S /2			30	80	- mV
Vol			-40°C to 125°C			105	
		R_L = 2 k Ω to V _S /2			140	300	
			-40°C to 125°C			500	
		Source		70	95		mA
Isc	Output Short-Circuit		-40°C to 125°C	50			
130	Current			130	150		
			-40°C to 125°C	85			
AC Spe	cifications	I	1		1	1	1
GBP	Gain-Bandwidth Product				12		MHz
SR		C = 1 10 V stop		8	12		\//···-
эк	Slew Rate	G = 1, 10 V step -40°C to 125°	-40°C to 125°C	7			V/µs
t _{OR}	Overload Recovery				500		ns
4	Settling Time, 0.1% ⁽³⁾	0 - 4 40	Vieter		5		
ts	Settling Time, 0.01% ⁽³⁾	G = 1, 10 V step			7		– µs
РМ	Phase Margin	R _L =10 kΩ, C	R _L =10 kΩ, C _L =50 pF		60		0
GM	Gain Margin ⁽³⁾	R _L =10 kΩ, C	C∟=50 pF		10		dB

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit	
Noise F	Noise Performance						
E _N	Input Voltage Noise	f = 0.1 Hz to 10 Hz		0.1		μV _{PP}	
e _N	Input Voltage Noise Density	f = 0.1 kHz		6		nV/√Hz	
		f = 1 kHz		6		nV/√Hz	
	Density	f = 10 kHz		7		nV/√Hz	
i _N	Input Current Noise ⁽³⁾	f = 10 kHz		200		fA/√Hz	
THD+N	Total Harmonic	f = 1 kHz, G = 1, R _L = 10 kΩ,		0.0002		%	
	Distortion and Noise	$V_{OUT} = 6 V_{RMS}$		0.0002		/0	

Electrical Characteristics (Continued)

Note3: Guaranteed by design.

Functional Description

Overview

ET85911 can operate on a single-supply voltage (4.5 V to 40 V), or a split-supply voltage (\pm 2.25 V to \pm 20 V), making them highly versatile and easy to use. The power-supply pins should have local bypass ceramic capacitors (typically 0.01 µF to 0.1 µF).

Power Supply Recommendations

Place 0.1 µF bypass capacitors close to the power supply pins for reducing coupling errors from the noisy or high impedance power supplies.

Package Dimension

SOP8

Revision History and Checking Table

Version	Date	Revision Item	Modifier	Function & Spec Checking	Package & Tape Checking
0.0	2024-8-7	Preliminary Version	Huyt	Tangyx	Liujy