

250 MHz, Rail-to-Rail Output CMOS Operational Amplifier

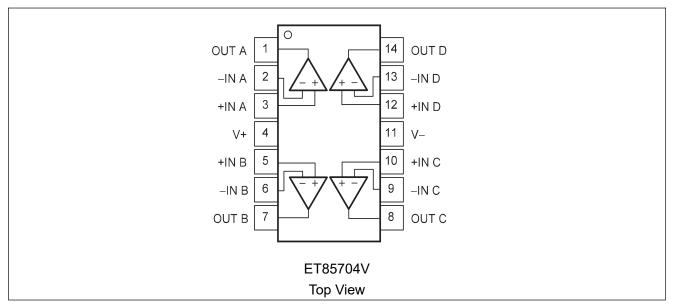
General Description

ET85704 offers low voltage operation, negative-rail input, rail-to-rail output, as well as excellent speed/power consumption ratio, providing an excellent bandwidth (250 MHz) and slew rate of 180 V/us. ET85704 is unity gain stable and feature an ultra-low input bias current.

ET85704 sets an industry-leading power-to performance ratio for rail-to-rail amplifiers.ET85704 is specified at the full temperature range of -40° C to $+125^{\circ}$ C under single or dual power supplies of 2.5 V to 5.5 V. ET85704 is available in a TSSOP14 package.

Features

- High Gain Bandwidth:250 MHz
- Rail-to-rail Output
- 1.5 mV Typical Vos
- Input Voltage Range: -0.2 V to 3.9 V with Vs = 5 V
- Supply Range:+2.5 V to +5.5 V
- Specified up to +125°C


Applications

- Audio ADC Input Buffers
- Photodiode Preamp
- High-Density Systems
- Portable Systems
- Driving A/D Converters

Device information

Part No.	Package	Tape / Reel
ET85704V	TSSOP14	Tape and Reel

Pin Configuration

Pin Function

Pin Number	Symbol	Descriptions
1,7,8,14	OUT	Output
2,6,9,13	-IN	Inverting input
3,5,10,12	+IN	Non-inverting input
4	V+	Positive supply
11	V-	Negative supply

Absolute Maximum Ratings

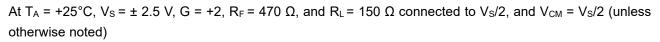
Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are only stress ratings, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating conditions are not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

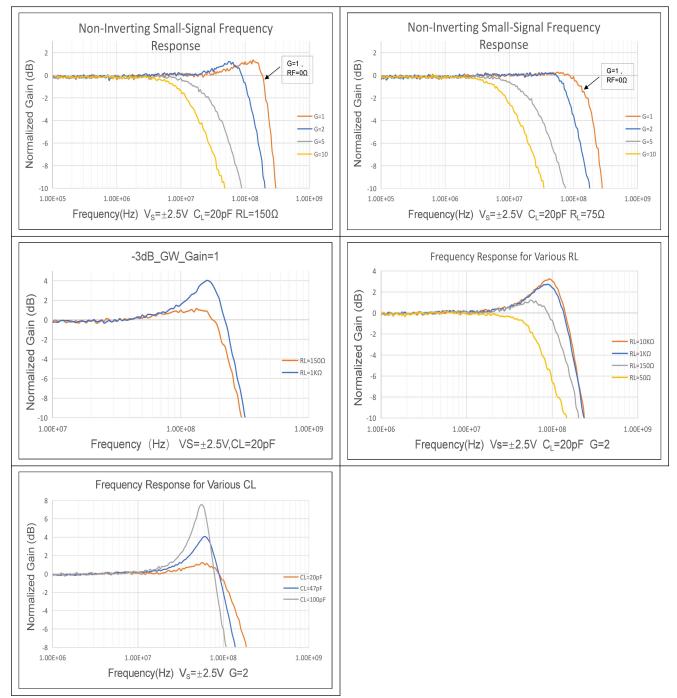
Parameter	Rating	Unit
Supply Voltage	0 to 7	V
Signal input terminals Voltage ⁽¹⁾	(V-)-0.5 to (V+)+0.5	V
Signal input terminals Current ⁽¹⁾	-10 to +10	mA
ESD (Human Body Model)	±4000	V
Storage Temperature Range	-65 to +150	°C
Max Junction Temperature Range	+150	°C
Operating Temperature Range	-40 to +125	°C

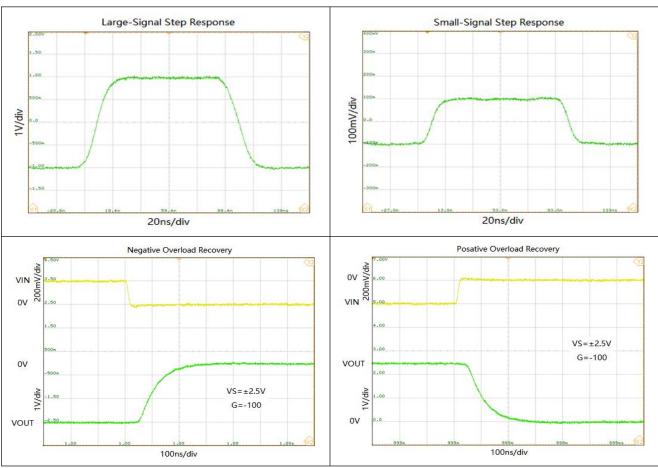
Note1: Input terminals are diode-clamped to the power-supply rails. Input signals that can swing more than 0.5 V beyond the supply rails should be current limited to 10 mA or less.

Recommended Operating Conditions

Characteristic	Symbol	Min	Мах	Unit
DC Supply Voltage	V _S = (V+) - (V-)	2.5 (±1.25)	5.5 (±2.75)	V
Operating Temperature Range	T _A	-40	+125	°C


Electrical Characteristics


At T_A = +25°C, V_S = 5 V, G = +2, R_F = 470 Ω , and R_L = 150 Ω connected to $V_S/2$, and V_{CM} = $V_S/2$ (unless otherwise noted)


Symbol	Parameter	Conditions	Min	Тур	Max	Unit
POWER SUPPLY						
V	Specified		0.5			
Vs	voltage range		2.5		5.5	V
Ιq	Quiescent current			3.2	3.9	mA
IQ	per amplifier			5.2	5.9	
PSRR	Input offset voltage	V_{s} = 2.5 V to 5.5 V,	70	90		dB
	vs power supply ⁽²⁾	V _{CM} = (V-)+0.5 V	70	30		
INPUT				1		_
V _{CM}	Common-mode	Vs = 5 V	-0.2		3.9	V
V CM	voltage range	_	-0.2		0.0	v
CMRR	Common-mode	V _S = 5.5 V,	66	85		dB
	rejection ratio ⁽²⁾	V_{CM} = -0.2 V to 3.5 V	00	00		
Vos	Input offset voltage	$V_{CM} = V_S / 2$		±1.5	±7.5	mV
dV _{os} /dT	Input offset voltage vs temperature	$V_{CM} = V_S/2, T_A = -40^{\circ}C \text{ to } +125^{\circ}C$		4		µV/°C
Ι _Β	Input bias current ⁽²⁾			±1		pА
los	Input offset current ⁽²⁾			±1		pА
Ουτρι	JT				•	
Δ	Open-loop	$V_{\rm S}$ = 5.0 V,R _L = 1 KΩ,V _O = V _S -0.2 V	95	110		dD
A _{OL}	voltage gain	$V_{\rm S}$ = 5.0 V,R _L = 150 Ω,V _O = V _S -0.3 V		85		– dB
Vo	Voltage output swing	R _L = 1 kΩ		20		mV
VO	from supply rails	$R_L = 1 R_{\Sigma Z}$	V 78	20		IIIV
	Output Current			85		mA
I _{OUT}	Source			00		
	Output Current Sink			90		mA
FREQU	JENCY RESPONSE					
		VOUT =100 mVpp,G=1		250		MHz
	Small-Signal	VOUT =100 mVpp,G=2		130		MHz
	Gain-bandwidth	VOUT =100 mVpp,G=5		33		MHz
		VOUT =100 mVpp,G=10		15		MHz
SR	Slew rate			180		V/µs
GBP	Gain-Bandwidth			250		MHz
GDF	Product			230		
NOISE						
en	Input voltage noise density ⁽²⁾	<i>f</i> = 1 MHz		8		nV/√Hz
Noto2.	Guaranteed by design.			1	1	

Note2: Guaranteed by design.

Typical Characteristics

Typical Characteristics(Continued)

Application Notes

ET85704 is a high speed, rail-to-rail operational amplifier that can be run from a single-supply voltage 2.5 V to $5.5 \text{ V} (\pm 1.25 \text{ V} \text{ to } \pm 2.75 \text{ V})$. Supply voltages higher than 7 V (absolute maximum) can permanently damage the amplifier. Good layout practice mandates use of a 0.1 uF capacitor place closely across the supply pins.

Layout Guidelines

Attention to good layout practices is always recommended. Keep traces short. When possible, use a PCB ground plane with surface-mount components placed as close to the device pins as possible. Place a 0.1uF capacitor closely across the supply pins. These guidelines should be applied throughout the analog circuit to improve performance and provide benefits such as reducing the EMI susceptibility.

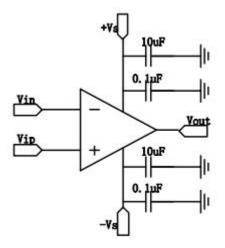
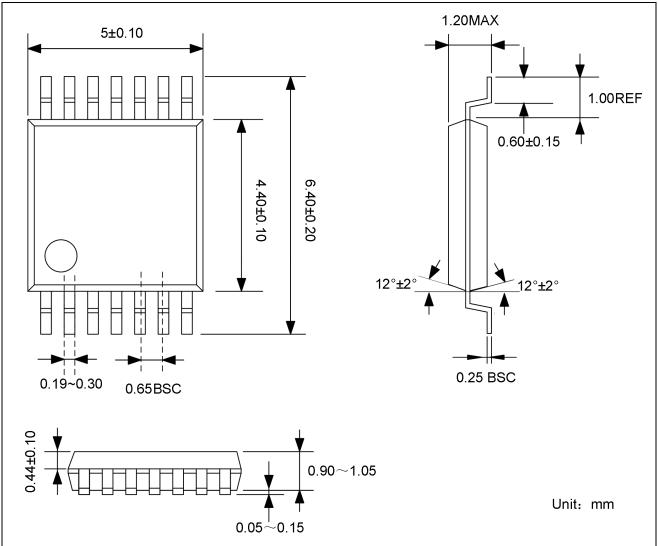



Figure1. Amplifier with Bypass Capacitors

Package Dimension

TSSOP14

Revision History and Checking Table

Version	Date	Revision Item	Modifier	Function & Spec Checking	Package & Tape Checking
1.0	2025-04-15	Original Version	Huyt	Wangxx	Liujy