Zero-Drift, Single-Supply, Rail-to-Rail Input/Output Dual Operational Amplifiers

General Description

ET85502 is a dual high-precision amplifiers featuring rail-to-rail input and output swings respectively,has ultra low offset, drift, and bias current. Either single or dual supplies can be used in the range from 2.7V to 5V with a single supply.

ET85502 provides the benefits previously found only in expensive auto-zeroing or chopper-stabilized amplifiers. These new zero-drift amplifiers combine low cost with high accuracy. No external capacitors are required.

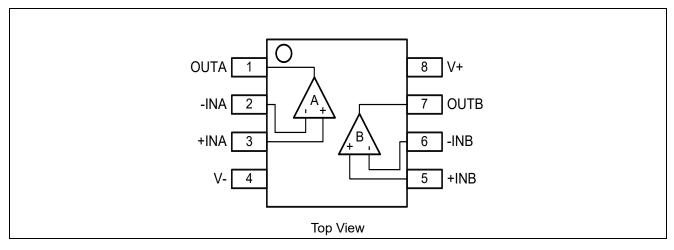
ET85502 is perfectly suited for applications where error sources cannot be tolerated, since the offset voltage is only 1 μ V and the drift is 0.005 μ V/°C. With nearly zero drift over operating temperature range, medical equipment, temperature, position and pressure sensors, and strain gauge amplifiers all benefit greatly . The rail-to-rail input and output swings provided by the ET85502 make both high-side and low-side sensing easy.

ET85502 is specified for the extended industrial/automotive temperature range (-40°C to +125°C) .

ET85502 is available in MSOP8 and SOP8 packages.

Features

- Low offset voltage : 1 µV
- Input offset drift : 0.005 µV/°C
- Overload recovery time : 50 µs
- Low supply current : 770 µA/CH
- High gain, CMRR, PSRR : 130 dB
- Ultra low input bias current : 20 pA
- No external capacitors required
- 2.7 V to 5.0 V single-supply operation


Applications

- Temperature sensors
- Pressure sensors
- Precision current sensing
- Strain gauge amplifiers
- Medical instrumentation
- Thermocouple amplifiers

Device information

Part No.	Package	Tape / Reel
ET85502M	SOP8	Tape and Reel 4K
ET85502U	MSOP8	Tape and Reel 4K

Pin Configuration

Pin Function

	Pin Number	Pin Name	Descriptions
	1	OUTA	Output
	2	-INA	Inverting input
FTOFFOOM	3	+INA	Non-inverting input
ET85502M ET85502U	4	V-	Negative supply
E1655020 -	5	+INB	Non-inverting input
	6	-INB	Inverting input
	7	OUTB	Output
	8	V+	Positive supply

Absolute Maximum Ratings

Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are only stress ratings, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating conditions are not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

Parameter	Rating	Unit
Supply Voltage ⁽¹⁾	6.0	V
Input Voltage	GND-0.3V to Vs+0.3	V
Differential Input Voltage	±5.0	V
ESD (Human Body Model)	±2000	V
Storage Temperature Range	-40 to +150	°C
Max Junction Temperature Range	+150	°C
Lead Temperature Range (Soldering, 60 sec)	300	°C

Note1: All voltage values, except differential voltage are with respect to network terminal.

Thermal Characteristics

Symbol	Package	Ratings	Value	Unit
Devi	SOP8	Thermal Characteristics,	150	°C/W
Reja	MSOP8 Thermal Resistance, Junction-to-Air		210	°C/W

Recommended Operating Conditions

Parameter	MIN	MAX	Unit
Supply Voltage (Vs)	2.7	5.0	V
Operating Temperature (T _A)	-40	125	°C

Electrical Characteristics

 V_S = 5 V, V_{CM} = 2.5 V, V_O = 2.5 V, T_A = 25°C, unless otherwise noted.

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
INPUT CHARACTERISTIC	cs					
				1	5	μV
Offset Voltage	Vos	$-40^{\circ}C \le T_A \le +125^{\circ}C$			10	μV
				10	50	pА
Input Bias Current	lв	-40°C ≤ T _A ≤ +85°C		160	300	pА
		-40°C ≤ T _A ≤ +125°C		2.5	4	nA
				20	70	pА
Input Offset Current	los	-40°C ≤ T _A ≤ +85°C		30	150	pА
		-40°C ≤ T _A ≤ +125°C		150	400	pА
Input Voltage Range	VIN		0		5	V
Common-Mode	CMDD	V _{CM} = 0 V to +5 V	120	140		dB
Rejection Ratio	CMRR	-40°C ≤ T _A ≤ +125°C	115	130		dB
Large Signal Voltage Gain ⁽²⁾		R∟ = 10 kΩ,	405	145		٩D
	Avo	$V_{\rm O}$ = 0.3 V to 4.7 V	125	145		dB
voltage Gain (=)		$-40^{\circ}C \le T_A \le +125^{\circ}C$	120	135		dB
Offset Voltage Drift	$\Delta V_{OS}/\Delta T$	$-40^{\circ}C \le T_A \le +125^{\circ}C$		0.005	0.04	µV/°C
OUTPUT CHARACTERIS	TICS	·				
		R_L = 100 k Ω to GND	4.99	4.998		V
		R_L = 100 k Ω to GND	4.99	4 007		V
Output Voltage High		@-40°C to +125°C		4.997		v
Output Voltage High	V _{он}	R_L = 10 k Ω to GND	4.95	4.98		V
		R_L = 10 k Ω to GND	4.95	4.975		V
		@-40°C to +125°C		4.975		
		R_L = 100 k Ω to V+		1	10	mV
		R_L = 100 k Ω to V+		2	10	mV
Output Voltage Low	V _{OL}	@-40°C to +125°C		2	10	IIIV
Juipur Vollage LOW	V OL	R_L = 10 k Ω to V+		10	30	mV
		R_L = 10 k Ω to V+		15	30	mV
		@-40°C to +125°C		10	- 50	IIIV
Output Short-Circuit	lsc		±25	±50		mA
Limit Current	150	−40°C to +125°C		±40		mA
Output Current	lo			±30		mA
Output Outrent	IU	−40°C to +125°C		±15		mA
POWER SUPPLY	-		-	-		
Power Supply	PSRR	Vs = 2.7 V to 5.5 V	120	130		dB
Rejection Ratio	FUNIT	$-40^{\circ}C \le T_A \le +125^{\circ}C$	115	130		dB
Supply Current/Amplifier	lsy	Vo = 0 V		770	975	μA
	ISY	$-40^{\circ}C \le T_A \le +125^{\circ}C$		1067	1264	μA

DYNAMIC PERFORMANCE							
Slew Rate	SR	R _L = 10 kΩ		0.4		V/µs	
Overload Recovery Time				0.05	0.3	ms	
Gain Bandwidth Product	GBP			1.5		MHz	
NOISE PERFORMANCE							
	en p-p	0 Hz to 10 Hz		1.0		μV p-p	
Voltage Noise	en p-p	0 Hz to 1 Hz		0.32		μV p-p	
Voltage Noise Density	en	f = 1 kHz		42		nV/√Hz	
Current Noise Density	İn	f = 10 Hz		2		fA/√Hz	

Note(2): Gain testing is dependent upon test bandwidth.

$\lambda = 0 = 0 = 0 = 0$	4.051(1) - 4.051		
$V_{S} = 2.7 V, V_{CM} =$	$1.35 V, V_0 = 1.35 V$	', T _A = 25°C, uni	ess otherwise noted.

Parameter	Symbol	Conditions	Min	Тур	Мах	Unit
INPUT CHARACTERISTIC	S					
Offeret \ (elterre	N			1	5	μV
Offset Voltage	Vos	–40°C ≤ T _A ≤ +125°C			10	μV
				10	50	pА
Input Bias Current	IB	–40°C ≤ T _A ≤ +85°C		160	300	pА
		$-40^{\circ}C \le T_A \le +125^{\circ}C$		2.5	4	nA
				10	50	pА
Input Offset Current	los	–40°C ≤ T _A ≤ +85°C		30	150	
		$-40^{\circ}C \le T_A \le +125^{\circ}C$		150	400	pА
Input Voltage Range	Vin		0		2.7	V
Common-Mode	CMRR	V_{CM} = 0 V to +2.7 V	115	130		dB
Rejection Ratio	CIVIRR	–40°C ≤ T _A ≤ +125°C	110	130		dB
Lorgo Signal	Avo	R _L = 10 kΩ,	110	140		dB
Large Signal		$V_{\rm O}$ = 0.3 V to 4.7 V				
Voltage Gain ⁽²⁾		$-40^{\circ}C \le T_A \le +125^{\circ}C$	105	130		dB
Offset Voltage Drift	ΔVos/ΔT	$-40^{\circ}C \le T_A \le +125^{\circ}C$		0.005	0.04	μV/°C
OUTPUT CHARACTERIST	FICS					
		R_L = 100 k Ω to GND	2.685	2.697		V
		R_L = 100 k Ω to GND	2.685	2.696		V
Output Voltage High	V _{он}	@−40°C to +125°C	2.005	2.090		v
Output Voltage Llight	VOH	R∟ = 10 kΩ to GND	2.67	2.68		V
		R∟ = 10 kΩ to GND	2.67	2.675		V
		@−40°C to +125°C	2.07	2.075		v
		R_L = 100 k Ω to V+		1	10	mV
		R_L = 100 k Ω to V+		2	10	mV
Output Voltage Low	Vol	@−40°C to +125°C		2	10	IIIV
	VOL	R_L = 10 k Ω to V+		10	20	mV
		R_L = 10 k Ω to V+		15	20	mV
		@−40°C to +125°C		10	20	111V

ET85502

Output Short-Circuit			±10	±15		mA
Limit Current	lsc	-40°C to +125°C		±10		mA
	1			±10		mA
Output Current	lo	-40°C to +125°C		±5		mA
POWER SUPPLY		·	•			
Power Supply		$V_{\rm S}$ = 2.7 V to 5.5 V	120	130		dB
Rejection Ratio	PSRR	-40°C ≤ T _A ≤ +125°C	115	130		dB
	lsy	V ₀ = 0 V		764	900	μA
Supply Current/Amplifier		-40°C ≤ T _A ≤ +125°C		1115	1279	μA
DYNAMIC PERFORMANC	E	·	•			
Slew Rate	SR	R _L = 10 kΩ		0.5		V/µs
Overload Recovery Time				0.05		ms
Gain Bandwidth Product	GBP			1		MHz
NOISE PERFORMANCE		·	•			
Voltage Noise	en p-p	0 Hz to 10 Hz		1.6		µV p-p
Voltage Noise Density	en	f = 1 kHz		75		nV/√Hz
Current Noise Density	İn	f = 10 Hz		2		fA/√Hz

Note(2): Gain testing is dependent upon test bandwidth.

Application Notes

Layout Guidelines

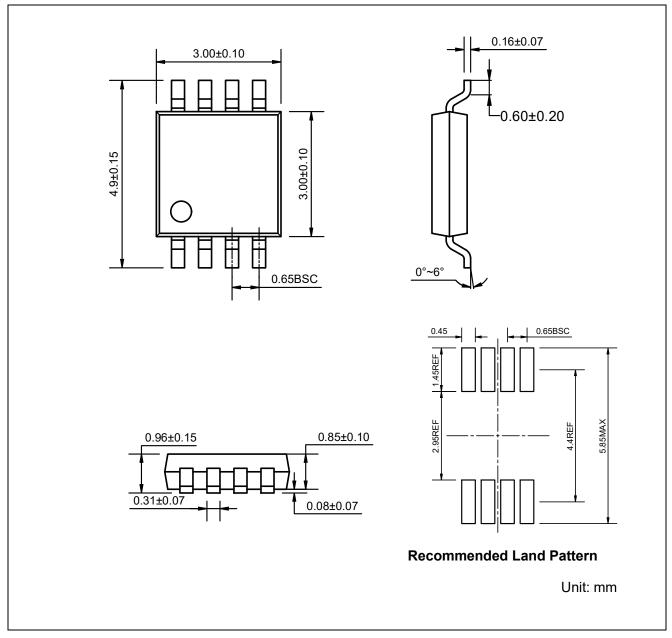
For best operational performance of the device, use good printed circuit board (PCB) layout practices, including:

Place the external components as close to the device as possible. This configuration prevents parasitic errors (such as the Seebeck effect) from occurring.


To reduce parasitic coupling, run the input traces as far away from the supply lines and digital signal as possible.

Low-ESR, 0.1µF ceramic bypass capacitors must be connected between each supply pin and ground, placed as close to the device as possible. A single bypass capacitor from V+ to ground is applicable to single supply applications.

Consider a driven, low-impedance guard ring around the critical traces. A guard ring can significantly reduce leakage currents from nearby traces that are at different potentials.


Package Dimension

SOP8

ET85502

MSOP8

Revision History and Checking Table

Varaian	Data	Revision Item	Modifier	Function & Spec	Package & Tape
Version	Date	Revision item	woomer	Checking	Checking
0	2021-4-11	Preliminary Version	Liuxm	Liuxm	Liujy
1.0	2023-2-27	Official version	Shibo	Wanggp	Liujy
1.1	2023-9-27	Naming updates	Shibo	Wanggp	Liujy