

Zero-Drift, Single-Supply, Rail-to-Rail Input/Output Single Operational Amplifiers

General Description

ET85501 is a high-precision amplifiers featuring rail-to-rail input and output swings respectively and has ultra low offset, drift, and bias current. Either single or dual supplies can be used in the range from 2.7V to 5V with a single supply.

ET85501 provides the benefits previously found only in expensive auto-zeroing or chopper-stabilized amplifiers. These new zero-drift amplifiers combine low cost with high accuracy. No external capacitors are required.

ET85501 is perfectly suited for applications where error sources cannot be tolerated, since the offset voltage is only $1\mu V$ and the drift is $0.005~\mu V/^{\circ}C$. With nearly zero drift over operating temperature range, medical equipment, temperature, position and pressure sensors, and strain gauge amplifiers all benefit greatly . The rail-to-rail input and output swings provided by the ET85501 make both high-side and low-side sensing easy.

ET85501 is specified for the extended industrial/automotive temperature range (-40°C to +125°C).

ET85501 single amplifier is available in MSOP8, SOP8 and SOT23-5 packages.

Features

Low offset voltage : 1 μV

Input offset drift : 0.005 μV/°C

Overload recovery time : 50 μs

Low supply current : 770 μA

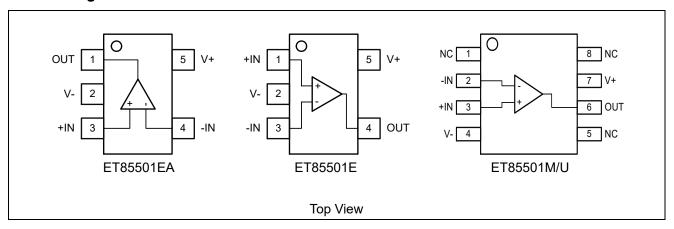
20DD 400 ID

High gain, CMRR, PSRR : 130 dB

Ultra low input bias current : 20 pA

No external capacitors required

2.7 V to 5.0 V single-supply operation


Applications

- Temperature sensors
- Pressure sensors
- Precision current sensing
- Strain gauge amplifiers
- Medical instrumentation
- Thermocouple amplifiers

Device information

Part No.	Package	Tape / Reel
ET85501M	SOP8	Tape and Reel 4K
ET85501U	MSOP8	Tape and Reel 4K
ET85501E	SOT23-5	Tape and Reel 3K
ET85501EA	SOT23-5	Tape and Reel 3K

Pin Configuration

Pin Function

	Pin Number	Symbol	Descriptions
	1	NC	1
	2	-IN	Inverting input
ET05504M	3	+IN	Non-inverting input
ET85501M ET85501U	4	V-	Negative supply
L1033010	5	NC	1
	6	OUT	Output
	7	V+	Positive supply
	8	NC	/

	Pin Number	Symbol	Descriptions
	1	OUT	Output
ET95501EA	2	V-	Negative supply
ET85501EA	3	+IN	Non-inverting input
	4	-IN	Inverting input
	5	V+	Positive supply

	Pin Number	Symbol	Descriptions
	1	+IN	Non-inverting input
ET85501E	2	V-	Negative supply
E100001E	3	-IN	Inverting input
	4	OUT	Output
	5	V+	Positive supply

Absolute Maximum Ratings

Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are only stress ratings, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating conditions are not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

Parameter	Rating	Unit
Supply Voltage ⁽¹⁾	6.0	V
Input Voltage	GND-0.3V to Vs+0.3	V
Differential Input Voltage	±5.0	V
ESD (Human Body Model)	±2000	V
Storage Temperature Range	-65 to +150	°C
Max Junction Temperature Range	-40 to +150	°C
Lead Temperature Range (Soldering, 60 sec)	300	°C

Note1: All voltage values, except differential voltage are with respect to network terminal.

Thermal Characteristics

Symbol	Package	Ratings	Value	Unit
	SOP8	Th	150	°C/W
Reja	MSOP8	Thermal Characteristics,	210	°C/W
	SOT23-5	Thermal Resistance, Junction-to-Air	190	°C/W

Recommended Operating Conditions

Parameter	MIN	MAX	Unit
Supply Voltage (Vs)	2.7	5.0	V
Operating Temperature (T _A)	-40	125	°C

Electrical Characteristics

 V_{S} = 5 V, V_{CM} = 2.5 V, V_{O} = 2.5 V, T_{A} = 25°C, unless otherwise noted.

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
INPUT CHARACTERISTIC	CS		•	1		•
Offset Voltage	Vos			1	5	μV
Oliset voltage	Vos	-40°C ≤ T _A ≤ +125°C			10	μV
				10	50	pА
Input Bias Current	lΒ	-40°C ≤ T _A ≤ +85°C		160	300	pА
		-40°C ≤ T _A ≤ +125°C		2.5	4	nA
				20	70	pА
Input Offset Current	los	-40°C ≤ T _A ≤ +85°C		30	150	pА
		-40°C ≤ T _A ≤ +125°C		150	400	pА
Input Voltage Range	V _{IN}		0		5	V
Common-Mode	CMDD	V _{CM} = 0 V to +5 V	120	140		dB
Rejection Ratio	CMRR	-40°C ≤ T _A ≤ +125°C	115	130		dB
l 0:l		$R_L = 10 \text{ k}\Omega$	405	1.45		40
Large Signal	Avo	$V_0 = 0.3 \text{ V to } 4.7 \text{ V}$	125	145		dB
Voltage Gain ⁽²⁾		-40°C ≤ T _A ≤ +125°C	120	135		dB
Offset Voltage Drift	ΔVos/ΔT	-40°C ≤ T _A ≤ +125°C		0.005	0.04	μV/°C
OUTPUT CHARACTERIS	TICS					
		R_L = 100 k Ω to GND	4.99	4.998		V
		R_L = 100 k Ω to GND	4.99	4.997		V
Outout Valtaga I ligh		@-40°C to +125°C		4.997		V
Output Voltage High	Vон	$R_L = 10 \text{ k}\Omega \text{ to GND}$	4.95	4.98		V
		$R_L = 10 \text{ k}\Omega \text{ to GND}$	4.95	4.975		V
		@-40°C to +125°C	4.95	4.975		V
		R_L = 100 k Ω to V+		1	10	mV
		R_L = 100 k Ω to V+		2	10	m\/
Output Voltage Low	V _{OL}	@-40°C to +125°C		2	10	mV
Output voltage Low	VOL	$R_L = 10 \text{ k}\Omega \text{ to V+}$		10	30	mV
		$R_L = 10 \text{ k}\Omega \text{ to V+}$		15	30	mV
		@-40°C to +125°C		13	30	IIIV
Output Short-Circuit	laa		±25	±50		mA
Limit Current	I _{SC}	-40°C to +125°C		±40		mA
Output Current	I.			±30		mA
Output Current	lo	-40°C to +125°C		±15		mA
POWER SUPPLY						

4

ET85501

Power Supply	PSRR	V _S = 2.7 V to 5.5 V	120	130		dB
Rejection Ratio	PSKK	-40°C ≤ T _A ≤ +125°C	115	130		dB
Cumply Current/Amplifier	1	V _O = 0 V		770	975	μA
Supply Current/Amplifier	lsy	-40°C ≤ T _A ≤ +125°C		1067	1264	μA
DYNAMIC PERFORMANC	E					
Slew Rate	SR	$R_L = 10 \text{ k}\Omega$		0.4		V/us
Overload Recovery Time				0.05	0.3	ms
Gain Bandwidth Product	GBP			1.5		MHz
NOISE PERFORMANCE						
Voltage Noise	e _n p-p	0 Hz to 10 Hz		1.0		μV p-p
Voltage Noise	e _n p-p	0 Hz to 1 Hz		0.32		μV p-p
Voltage Noise Density	e n	f = 1 kHz		42		nV/√Hz
Current Noise Density	İn	f = 10 Hz		2		fA/√Hz

Note(2): Gain testing is dependent upon test bandwidth.

 V_{S} = 2.7 V, V_{CM} = 1.35 V, V_{O} = 1.35 V, T_{A} = 25°C, unless otherwise noted.

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
INPUT CHARACTERISTIC	S					
Offe et Velte re	V			1	5	μV
Offset Voltage	Vos	-40°C ≤ T _A ≤ +125°C			10	μV
				10	50	рА
Input Bias Current	I _B	-40°C ≤ T _A ≤ +85°C		160	300	рА
		-40°C ≤ T _A ≤ +125°C		2.5	4	nA
				10	50	pА
Input Offset Current	los	-40°C ≤ T _A ≤ +85°C		30	150	
		-40°C ≤ T _A ≤ +125°C		150	400	pА
Input Voltage Range	VIN		0		2.7	V
Common-Mode	CMDD	V _{CM} = 0 V to +2.7 V	115	130		dB
Rejection Ratio	CMRR	-40°C ≤ T _A ≤ +125°C	110	130		dB
Lorgo Cignol	Avo	$R_L = 10 \text{ k}\Omega$,	110	140		٩D
Large Signal		$V_0 = 0.3 \text{ V to } 4.7 \text{ V}$		140		dB
Voltage Gain ⁽²⁾		-40°C ≤ T _A ≤ +125°C	105	130		dB
Offset Voltage Drift	ΔV _{OS} /ΔT	-40°C ≤ T _A ≤ +125°C		0.005	0.04	μV/°C
OUTPUT CHARACTERIS	TICS					
		R_L = 100 k Ω to GND	2.685	2.697		V
		R_L = 100 k Ω to GND	2.685	2.696		V
Output Voltage High	V _{OH}	@-40°C to +125°C	2.000	2.090		V
Output Voltage High	V ОН	R_L = 10 k Ω to GND	2.67	2.68		V
		R_L = 10 k Ω to GND	2.67	2.675		V
		@-40°C to +125°C	2.07	2.075		V
Output Voltage Law	Va	R_L = 100 k Ω to V+		1	10	mV
Output Voltage Low	Vol	R_L = 100 k Ω to V+		2	10	mV

ET85501

		@-40°C to +125°C				
		$R_L = 10 \text{ k}\Omega \text{ to V+}$		10	20	mV
		$R_L = 10 \text{ k}\Omega \text{ to V+}$		15	20	mV
		@-40°C to +125°C		15	20	IIIV
Output Short-Circuit	I _{SC}		±10	±15		mA
Limit Current	ISC	-40°C to +125°C		±10		mA
Output Current	Ιο			±10		mA
Output Current	Ю	−40°C to +125°C		±5		mA
POWER SUPPLY						
Power Supply	PSRR	V _S = 2.7 V to 5.5 V	120	130		dB
Rejection Ratio	FORK	-40°C ≤ T _A ≤ +125°C	115	130		dB
Supply Current/Amplifier	I _{SY}	V _O = 0 V		764	900	μΑ
Supply Current/Amplifier	ISY	-40°C ≤ T _A ≤ +125°C		1115	1279	μΑ
DYNAMIC PERFORMANC	E					
Slew Rate	SR	$R_L = 10 \text{ k}\Omega$		0.5		V/µs
Overload Recovery Time				0.05		ms
Gain Bandwidth Product	GBP			1		MHz
NOISE PERFORMANCE						
Voltage Noise	e _n p-p	0 Hz to 10 Hz		1.6		μV p-p
Voltage Noise Density	e _n	f = 1 kHz		75		nV/√Hz
Current Noise Density	İn	f = 10 Hz		2		fA/√Hz

Note(2): Gain testing is dependent upon test bandwidth.

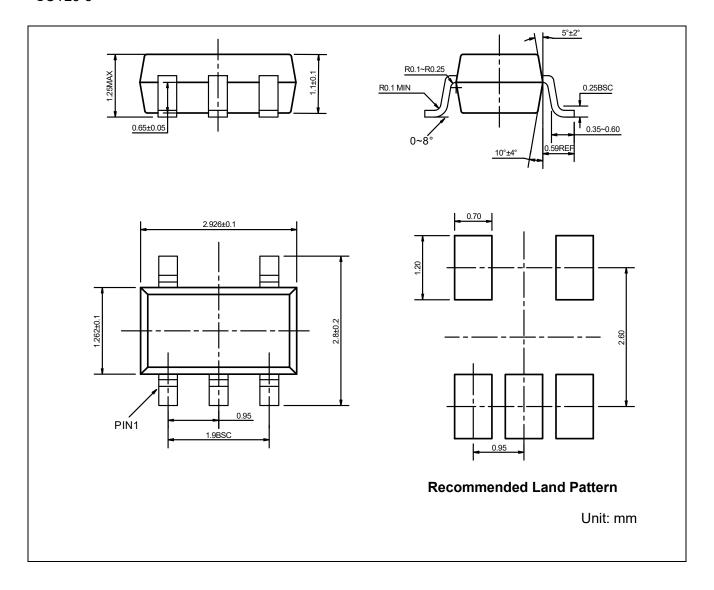
Application Notes

Layout Guidelines

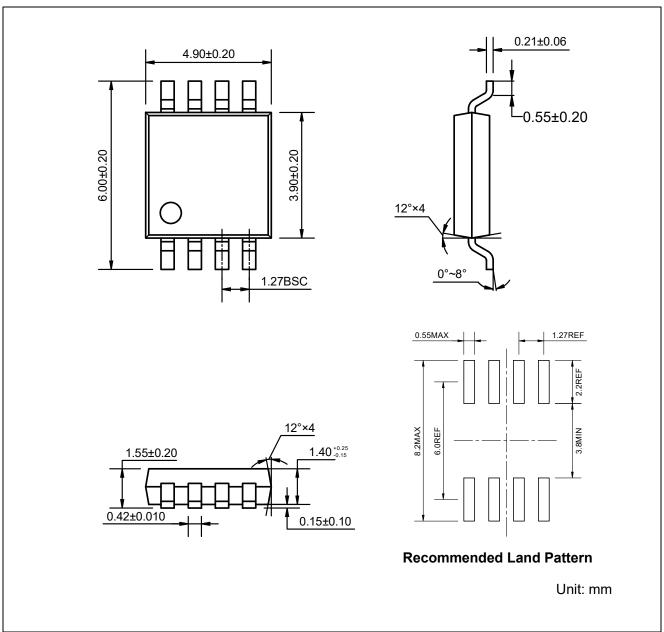
For best operational performance of the device, use good printed circuit board (PCB) layout practices, including:

Place the external components as close to the device as possible. This configuration prevents parasitic errors (such as the Seebeck effect) from occurring.

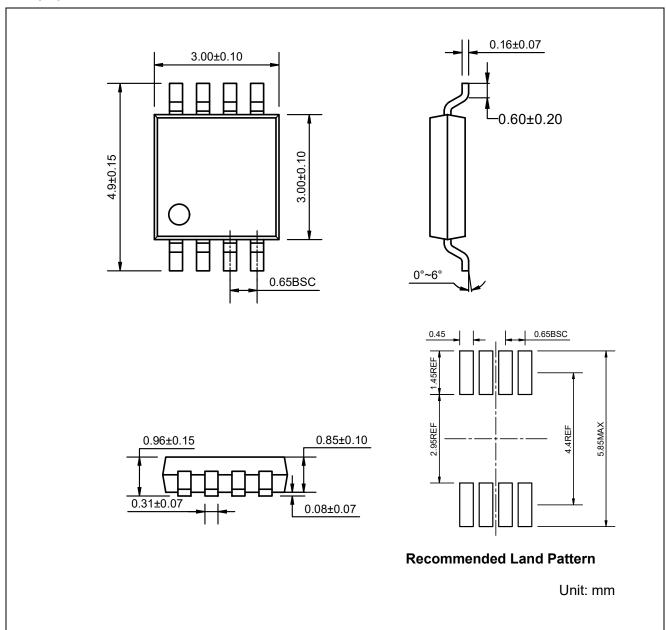
To reduce parasitic coupling, run the input traces as far away from the supply lines and digital signal as possible.


Low-ESR, $0.1\mu F$ ceramic bypass capacitors must be connected between each supply pin and ground, placed as close to the device as possible. A single bypass capacitor from V+ to ground is applicable to single supply applications.

Consider a driven, low-impedance guard ring around the critical traces. A guard ring can significantly reduce leakage currents from nearby traces that are at different potentials.


ET85501

Package Dimension


SOT23-5

SOP8

MSOP8

Revision History and Checking Table

Version	Date	Revision Item	Modifier	Function & Spec Checking	Package & Tape Checking
0	2021-4-11	Preliminary Version	Liuxm	Liuxm	Liujy
1.0	2023-2-27	Official version	Shibo	Wanggp	Liujy
1.1	2023-9-27	Naming updates	Shibo	Wanggp	Liujy