Adjustable Current-Limit Load Switch with OVP

General Description

ET2095A load switch features True Reverse-Current Blocking (TRCB) capability to isolate the output from the system, the internal switch features low $100m\Omega$ (typ) on-resistance and operate from a +2.5V to +5.5V input voltage range. The slew-rate controlled switch is also ideal for a large load capacitor as well as high-current load switching applications. ET2095A has over-voltage protection and over-temperature protection.

The ET2095A is packaged in small WLCSP9 1.24mm×1.16mm, is suitable for space-limited portable device applications.

The device operates over the -40°C to +85°C extended temperature range.

Features

- Wide Input Voltage Range from 2.5V to 5.5V
- Max Current Capability:2.5A
- Absolute maximum voltage of Vout up to 28V
- Adjustable Current Limit Set Range : 0.1A~2.5A
 - > 0.1A~2.0A with 10% Accuracy
 - > >2.0A with 12% Accuracy
- Integrated Typical 100mΩ N-Channel MOSFET Switch
- Over-voltage Lockout at Vout = 5.8V Typical
- Fault Flag Open Drain Output
- Thermal Shutdown Protection (OTP)
- Under-Voltage Lockout (UVLO)
- True Reverse-Current Blocking (TRCB)
- ESD Protected:HBM>2.0kV; Charged Device Model>1.0kV
- Part No. and Package

Part No.	Package	MSL
ET2095A	WLCSP9 (1.24mm × 1.16mm , 0.4mm ball pitch)	1

Application

- Smart Phones, Tablet PCs
- HDD, Storage, and Solid State Memory Devices
- Portable Media Devices, Laptop & MID
- SLR Digital Cameras

Pin Configuration

Pin Function

Pin	Name	Description	
A3、B3	VOUT	Output of the load switch.	
A1、B1	VIN	Input of the load switch.	
A2、B2	GND	Ground.	
00		Active HIGH - GPIO compatible Enable input.	
C3	EN	EN high to turn on the load switch.	
C1		Current limit fault flag pin.	
C1	FLAG Open-drain output, active low signal. Pull up with a res		
		Current limit set pin.	
C2	SET	Connect a resistor between this pin and ground to program the	
		desired current limit point.	

Block Diagram

Input Capacitor

The input capacitor C_{IN} protects the power supply from current transients generated by the load attached to the ET2095A. C_{IN} should be located as close to the device V_{IN} pin as practically possible. A high-value capacitor on C_{IN} can be used to reduce the voltage drop in high-current applications.

Output Capacitor

An output capacitor should be placed between the V_{OUT} and GND pins. This capacitor prevents parasitic board inductance from dorcing V_{OUT} below GND when the switch is on. This capacitor also prevents reverse inrush current from creating a voltage spike that could damage the device in the case of a V_{OUT} short.

Fault Reporting

The FLAG pin is provided to alert the system if an ET2095A load is not receiving sufficient current to operate properly. Upon the detection of an over-current, FLAG signal the fault by activating LOW.

Current Limiting

The current limit ensures that the current through the switch does not exceed the maximum set value, while not limiting the minimum value. The current at which the part's limit is adjustable through the selection of the external resistor connected to the SET pin. Information for selecting the resistor is found in the section below. The device acts as a constant-current source when the load draws more than the maximum value set by the device until thermal shutdown occurs. The device recovers if the die temperature drops below the threshold temperature. If current limit is not used, the SET pin could be connected with GND, but the maximum current must be less than the maximum current capability of 2.8A.

Under-Voltage Lockout (UVLO)

The under-voltage lockout turns the switch off if the input voltage drops below the lockout threshold. With the EN pin active, the input voltage rising above the UVLO threshold releases the lockout and enables the switch.

True Reverse-Current Blocking

The true reverse-current blocking feature protects the input source against current flow from output to input when the load switch is off.

Thermal Shutdown

The thermal shutdown protects the die from internally or externally generated excessive temperature. During an over-temperature condition, the switch is turned off. The switch automatically turns on again if the temperature of the die drops below the threshold temperature.

Setting Current Limit

The current limit is set with an external resistor connected between the SET and GND pins. The resistor is selected using Table 1. Resistor tolerance of 10% or less is recommended.

P (0)		Current Limit (mA)	
R _{SET} (Ω)	Min	Тур	Мах
422	2200	2500	2800
528	1800	2000	2200
604	1570	1750	1920
680	1350	1500	1650
866	1125	1250	1375
1070	900	1000	1100
1200	810	900	990
1330	720	800	880
1500	630	700	770
1740	540	600	660
2100	450	500	550
2320	405	450	495
2550	360	400	440
2940	315	350	385
3400	270	300	330
4020	225	250	275
4990	180	200	220
6490	135	150	165
9530	90	100	110

Note: Table values based on 1% tolerance resistor.

Board Layout

For best performance, all traces should be as short as possible. To be most effctive, the input and output capacitors should be placed close to the device to minimize the effect that parasitic trace inductance may have on normal and short-circuit operation. Using wide traces for V_{IN},V_{OUT},GND helps minimize parasitic electrical effects along with minimizing the case-to-ambient thermal impedance.

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol		Parameters	Min	Max	Unit
VPIN	Vout to GND, Vout to V_{IN}			28	V
V PIN	EN, VIN, FLAG, SET to GND		-0.3	7.0	V
Isw	Maximun	n Continuous Switch Current		2.8	А
TJ	Opera	ting Junction Temperature	-40	+150	°C
Tstg	Stora	ge Junction Temperature	-65	+150	°C
θ _{JA}	Thermal Resistance, Junction-to-Ambient			95	°C/w
OJA	(1-inch	(1-inch Square Pad of 2 oz.copper)			C/w
PD	Total Po	Total Power Dissipation at T _A =25°C			W
	Electrostatic	Electrostatic Human Body Model, JESD22-A114			
\/	Discharge Capability	Charged Device Model, JESD22-C101	1.5		kV
V _{ESD}	IEC61000-4-2	Air Discharge (VIN,VEN,VOUT to GND)	15.0		ĸν
	System Level	Contact Discharge(VIN, VEN, VOUT to GND)	8.0		

Recommended Operating Conditions

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. ET2095 does not recommend exceeding them or designing to Absolute Maximum Ratings.

Symbol	Parameters	Min	Max	Unit
VIN	Supply Voltage	2.5	5.5	V
TA	Ambient Operating Temperature	-40	85	°C

Electrical Characteristics

Symbol	Parameters	Conditions	Min	Тур	Мах	Unit
Basic Ope	eration		•	•		
Vin	Input Voltage		2.5		5.5	V
I _{Q(OFF)}	Off Supply Current	V _{EN} =GND,V _{OUT} =Open		1	2	uA
ISD(OFF)	Shutdown Current	VIN=5.5V, VOUT=0V, VEN=GND		0.1	4.0	uA
lq	Quiescent Current	Iout=0mA		65	100	uA
Ron	On Resistance	V _{IN} =5.0V, I _{OUT} =1A		100	120	mΩ
VIH	EN Input Logic HIGH Voltage	V_{IN} =2.5V to 5.5V	1.15			V
VIL	EN Input Logic LOW Voltage	V_{IN} =2.5V to 5.5V			0.65	V
	FLAG Output Logic	VIN=5.0V, ISINK=10mA		0.1	0.2	v
V_{IL_FLAG}	LOW Voltage	VIN=2.5V, ISINK=10mA		0.15	0.30	V
Iflag_lk	FLAG Output HIGH Leakage Current	V _{IN} =5.0V,Switch On			1	uA
I _{EN}	EN Input Leakage	V_{EN} =0V to V_{IN}			1	uA
5	Pull-Down Resistance	V _{IN} =2.5~5.5V, V _{EN} =HIGH,				
$R_{EN_{PD}}$	REN_PD at EN Pin T _A =-40 to 85°C			14		MC
Over-Volta	age Protection					
M		Vout Rising Threshold	5.5	5.8	6.0	V
Vov_trip	Output OVP Lockout	Vout Falling Threshold		5.5		V
OUT _{HYS}	Output OVP Hysteresis		0.1	0.3	0.5	V
tovp	Response Time	I _{OUT} =0.5A,C _L =1uF,T _A =25°C, V _{OUT} from 5.5V to 6.0V	1		4	us
Over-Curr	ent Protection					
		V _{IN} =5.0V,R _{SET} =2100Ω,				
		Vout=1.68V to 5.0V with	450	500	550	
h.e.	Current Limit ⁽¹⁾	10% Accuracy				
ILIM		V_{IN} =5.0V,R _{SET} =1070 Ω ,				- mA
		Vout=1.68V to 5.0V with	900	1000	1100	
		10% Accuracy				
Vuvlo	Under-Voltage Lockout	V _{IN} Incresaing	1.9	2.3	2.5	v
V UVLO		V _{IN} Decreasing	1.8	2.1	2.4	V
VUVLO_HYS	UVLO Hysteresis			200		m∖
IRCB	RCB Current	V _{EN} =0V,V _{OUT} =5.5V			3	uA
tures	Hard Over-Current	Moderate Over-Current	6			us
t _{HOCP}	Response Time	Condition, Iou⊤≥I _{LIM} Vou⊤=0V				
toop	Over-Current	t Moderate Over-Current 7		us		
tocp	Response Time	Condition, Iouт≥ILIM Vouт≤VIN				us

Electrical Characteristics (Continued)

(1 - 2) = 2 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1	typical values are at V _{IN} =5V and T _A =25°	C unloss otherwise stated)
(V N - Z, 3 U 3, 3 V, A4U U + 03 U		J. Unless otherwise stated)
(·//···································	-,

Symbol	Parameters	Conditions	Min	Тур	Max	Unit
4	Over-Current Flag	When Over-Current Occurs		0		m 0
tocr Response Time to I	to Flag Pulling LOW		8		ms	
		Shutdown Threshold		155		
TSD	Thermal Shutdown ⁽²⁾	Return from Shutdown		135		°C
		Hysteresis		20		
Dynamic 0	Characteristics					
t _{DON}	Turn-On Delay ^(2,3)			0.67		
t _R	V _{OUT} Rise Time ^(2,3)	V _{IN} =5V,		0.69		
t _{ON}	Turn-On Time ^(2,4)	R∟=100Ω, C∟=1μF,		1.36		
tDOFF	Turn-Off Delay ^(2,3)	T _A =25°C,		0.01		ms
t⊧	Vout Fall Time ^(2,3)	$R_{SET}=2.04k\Omega$		0.22		
t _{OFF}	Turn-Off Time ^(2,5)			0.23		

Notes:

- 1. Characterization based on 1% tolerance resistor.
- 2. This parameter is guaranteed by design and characterization; not production tested.
- 3. $t_{\text{DON}}/t_{\text{DOFF}}/t_{\text{R}}/t_{\text{F}}$ are defined in Timing Diagrm below.
- **4.** $t_{ON} = t_R + t_{DON}$.
- 5. toff=tf + tdoff.
- **6.** The relationship between V_{IH}/V_{IL} and V_{IN} is as shown below. Please follow EC table when using ET2095A.

Timing Diagram

ET2095A

Application Circuits

Notes:

- * C_{IN} and C_{OUT} capacitors recommended for improvement of device stability.
- ** This electric circuit only supplies for reference.

Package Dimension

WLCSP9

Tape Information

Marking

Revision History and Checking Table

Version	Date	Revision Item	Modifier	Function & Spec Checking	Package & Tape Checking
1.0	2021-11-10	First version	Wum	Wuxj	Zhujl
1.1	2022-02-24	Correct Typo	Wum	Wuxj	Zhujl
1.2	2022-12-14	Update Format	Zou Chao Min	Shi Bo	Zhujl
1.3	2023-10-23	Update marking	Shibo	Shi Bo	Liu Jia Ying