ET3176 - 5.7V, 6A, 18mΩ Dual-Channel Load Switch

General Description

The ET3176 is a dual-channel load switch with controlled turn on. The device contains two N-channel MOSFETs that can operate over an input voltage range of 0.6V to 5.7V and can support a maximum continuous current of 6A per channel. Each switch is independently controlled by an on and off input (ON1 and ON2), which can interface directly with low-voltage control signals.

The ET3176 is capable of thermal shutdown when the junction temperature is above the threshold, turning the switch off. The switch turns on again when the junction temperature stabilizes to a safe range. The ET3176 also offers an optional integrated 230Ω on-chip load resistor for quick output discharge when the switch is turned off.

The ET3176 is available in a small DFN14 package with thermal pad allowing for high power dissipation.

Features

- Integrated Dual- Channel Load Switch
- VBIAS Voltage Range:2.5V to 5.7V
- Input Voltage Range: 0.6V to V_{BIAS}
- Ultra low Ron Resistance :
 - R_{ON}=18m\Omega (Typical) at V_IN=0.6V to 5V ,V_BIAS=5V
 - Ron=22m Ω (Typical) at Vin=0.6V to 2.5V, VBIAS=2.5V
- 6A Maximum Continuous Switch Current per channel
- Low Quiescent Current :
 - 22uA (Typical, Both Channels) at V_{IN} = V_{BIAS} =5V
 - 20uA (Typical, Single Channel) at $V_{\text{IN}}\text{=}V_{\text{BIAS}}\text{=}5V$
- Control Input Threshold Enable Use of 1.2V/1.8V/2.5V/3.3V Logic
- Configurable Rise Time
- Thermal Shutdown
- Quick Output Discharge (QOD)
- DFN14 (3mm×2mm) Package with Thermal Pad
- ESD Protected:
 - HBM 4.0kV Pass
 - CDM 2.0kV Pass

Application

- Ultra-book TM / Notebooks and Tablet PCs
- Set-top Boxes and Residential Gateways
- Telecom Systems and Solid-State Drives (SSD)

Pin Configuration

Pin Function

Pin No.	Pin Name	I/O	Description
			Switch 1 input.Recommended voltage range for these pins for optional
1, 2	VIN1		$R_{\mbox{\scriptsize ON}}$ performance is 0.6V to $V_{\mbox{\scriptsize BIAS}}.Place$ an optional decoupling capacitor
1, 2	VIINI	I	between these pins and GND to reduce VIN1 dip during turn on of the
			channel.
3	ON1		Active-High switch 1 control input. Do not leave floating
4	VBIAS	I	Bias voltage. Power supply to the device. Recommended voltage range
4	VDIAS	I	for this pin is 2.5V to 5.7V
5	ON2	I	Active-High switch 2 control input. Do not leave floating
			Switch 2 input.Recommended voltage range for these pins for optional
6.7	VIN2		R_{ON} performance is 0.6V to $V_{\text{BIAS}}.Place$ an optional decoupling capacitor
6,7	VIINZ	I	between these pins and GND to reduce VIN2 dip during turn on of the
			channel.
8,9	VOUT2	0	Switch 2 output
			Switch 2 slew rate control. Can be left floating.Capacitor used on this
10	CT2	0	pin must be rated for a minimum of 25V for desired rise time
			performance
11	GND	/	Ground
			Switch 1 slew rate control. Can be left floating.Capacitor used on this
12	CT1	0	pin must be rated for a minimum of 25V for desired rise time
			performance
13,14	VOUT1	0	Switch 1 output
	Thermal		Thermal pad (exposed center pad) to alleviate thermal stress.
-	Pad	-	Tie to GND.

ET3176

Block Diagram

Functional Description

Input Capacitor

To limit the voltage drop on the input supply caused by transient inrush current when the switch turns on into a discharged load capacitor or short-circuit, a capacitor must be placed between the VIN and GND pins. A 1uF ceramic capacitor, C_{IN} , placed close to the pins is usually sufficient. Higher-value C_{IN} can be used to reduce the voltage drop in higher-current applications. When switching heavy loads, it is recommended to have an input capacitor 10 times higher than the output capacitor to avoid excessive voltage drop.

Output Capacitor

Due to the integrated body diode in the NMOS switch, a C_{IN} greater than C_L is highly recommended. A C_L greater than C_{IN} can cause V_{OUT} to exceed V_{IN} when the system supply is removed. This could result in current flow through the body diode from V_{OUT} to V_{IN} . A C_{IN} to C_{OUT} ratio of 10 to 1 is recommended for minimizing V_{IN} dip caused by inrush currents during startup, however a 10 to 1 ratio for capacitance is not required for proper functionality of the device. A ratio smaller than 10 to 1 (such as 1 to 1) could cause a V_{IN} dip upon turn-on due to inrush currents.

ON/OFF Control

The ON terminal controls the state of the load switch, and asserting the terminal high (active high) enables the switch. The ON terminal is compatible with standard GPIO logic threshold and can be used with any micro-controller or discrete logic with 1.2V or higher GPIO voltage. This terminal cannot be left floating and must be tied either high or low for proper functionality.

Quick Output Discharge (QOD)

The ET3176 includes a QOD feature. When the switch is disabled, an internal discharge resistance is connected between VOUT and GND to remove the remaining charge from the output. This resistance prevents the output from floating while the switch is disabled. For best result, it is recommended that the device gets disabled before VBIAS falls below the minimum recommended voltage.

Thermal Shutdown

Thermal shutdown protects the part from internally or externally generated excessive temperatures. When the device temperature exceeds TSD (Typical 160°C), the switch is turned off. The switch automatically turns on again if the temperature of the die drops 20 degrees below the TSD threshold.

Functions Table

ON State	VIN to VOUT	VOUT State
L	OFF	GND
Н	ON	VIN

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol		Parameters				
VIN1,2		V _{IN} to GND	-0.3	6.0	V	
VBIAS		V _{BIAS} to GND	-0.3	6.0	V	
Vout1,2		V _{OUT} to GND	-0.3	6.0	V	
Von1,2		ON to GND	-0.3	6.0	V	
Імах	Maximum Contir		6.0	Α		
I _{PLS}	Maximum Pulsed Swite		8.0	Α		
TJ	Maxim	um junction temperature		150	°C	
T _{STG}	Storag	-65	+150	°C		
θ _{JA}	Junction-to-ambient thermal resistance			1	°C/W	
	Electrostatic Human Body Model, JESD22-A114					
Vesd	Discharge Capability	Charged Device Model, JESD22-C101	±2.0		kV	

Recommended Operating Conditions

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. ETEK does not recommend exceeding them or designing to Absolute Maximum Ratings.

Symbol	F	Parameters			
V _{IN1,2}	Ir	nput Voltage	0.6	VBIAS	V
VBIAS	Bias	s voltage range	2.5	5.7	V
V _{ON1,2}	ON	voltage range	0	5.7	V
V _{OUT1,2}	Outp	Output voltage range			V
Ň		V _{BIAS} =2.5V to 5V, T _A <85°C	1.05	5.7	V
VIH	High-level voltage ON V _{BIAS} =2.5V to 5.7V, T _A <105°C		1.2	5.7	V
VIL	Low-level voltage ON V _{BIAS} =2.5V to 5.5V			0.5	V
CIN1,2	Inp	1		uF	
T _A	Ambient Op	perating Temperature ⁽²⁾	-40	+105	°C

Note(1) See the Input Capacitor section

Note(2) In applications where high power dissipation and/or poor package thermal resistance is present, the maximum ambient temperature may have to be derated. Maximum ambient temperature (T_{A_MAX}) is dependent on the maximum operating junction temperature (T_{J_MAX}), the maximum power dissipation of the device in the application(P_{D_MAX}), and the junction-to-ambient thermal resistance of the part/package in the application (θ_{JA}), as given by the following equation: $T_{A_MAX} = T_{J_MAX} - (\theta_{JA} \times P_{D_MAX})$.

Electrical Characteristics, V_{BIAS}=5.0V

The specification in below table applies $V_{BIAS} = 5.0V$, typical values are for $T_A = 25^{\circ}C$ (unless otherwise noted).

Symbol	Parameter		Min	Тур	Max	Unit		
-	pply and Current							
	VBIAS Quiescent	ουτ1=Ιοι	JT2 =0mA ,	T _A =-40 to +85°C		22	32	
I _{Q_BIAS} -	Current		'ον1,2 =5 V	T _A =-40 to +105°C			35	uA
	(both channels)		-0					
	VBIAS Quiescent Current		JT2=0mA, 2=0V	T _A =-40 to +85°C		20	30	uA
	(single channel)		2-0ν / _{0Ν1} =5V	T _A =-40 to +105°C			33	u.
Is_vbias	V _{BIAS} Shutdown Current	V _{ON1,2} =0V,	V _{OUT1,2} =0V	T _A =-40 to +105°C		1.0	2.3	μA
			V _{IN} =5.0V	T _A =-40 to +85°C		0.005	5.5	
			VIN-5.0V	T _A =-40 to +105°C			8.0	
				T _A =-40 to +85°C		0.002	1.4	
	V _{IN} Shutdown	V _{ON} =0V	V _{IN} =3.3V	T _A =-40 to +105°C			3.4	
ls_vin	Current (per channel)	Vout=0V		T _A =-40 to +85°C		0.002	0.5	μA
			V _{IN} =1.8V	T _A =-40 to +105°C			1.7	-
			V _{IN} =0.6V	T _A =-40 to +85°C		0.001	0.3	
				T _A =-40 to +105°C			1.5	
Ion	ON-pin Input Leakage Current	V _{ON} =5.5V		T _A =-40 to +105°C			0.1	μA
Resistanc	e Characteristics							
			V _{IN} =5.0V	T _A =25°C		18	29	
				T _A =-40 to +85°C			32	1
				T _A =-40 to +105°C			35	1
				T _A =25°C		18	29	
			V _{IN} =3.3V	T _A =-40 to +85°C			32	
				T _A =-40 to +105°C			35	
				T _A =25°C		18	29	1
			V _{IN} =1.8V	T _A =-40 to +85°C			32	
-	On-Resistance	louт=-0.2		T _A =-40 to +105°C			35	
Ron	(per channel)	А		T _A =25°C		18	29	mΩ
			V _{IN} =1.2V	T _A =-40 to +85°C			32	1
				T _A =-40 to +105°C			35	1
				T _A =25°C		18	29	
			V _{IN} =1.05V	T _A =-40 to +85°C			32	1
				T _A =-40 to +105°C			35	1
				T _A =25°C		18	29	1
			V _{IN} =0.6V	T _A =-40 to +85°C			32	1
				T _A =-40 to +105°C			35	1

Electrical Characteristics	s, Vыаs=5.0V (Continued)
Electrical Characteristics	s, v BIAS-5.0V (Continued)

Symbol	Parameter	Test Conditions			Тур	Max	Unit
Von_hys	ON-pin Hysteresis	V _{IN} =5V T _A =25°C			60		mV
P	Output Pull-down	V _{IN} =5.0V, V _{ON} =0V, T _A =-40 to +105°C			230	280	Ω
R _{PD}	Resistance	Vout=5.0V	TA40 10 + 105 C		230	200	12
Tsd	Thermal Shutdown	Junction tempe	erature rising		160		°C
Thermal Shutdown		lunction tomporature	o folling throohold		20		°C
I SD_HYS	Hysteresis	Junction temperature falling threshold			20		C

Electrical Characteristics, VBIAS=2.5V

The specification in below table applies $V_{BIAS} = 5.0V$, typical values are for $T_A = 25^{\circ}C$ (unless otherwise noted).

Symbol	Parameter		Test Cond	Min	Тур	Max	Unit	
Power Supply and Current								
	V _{BIAS} Quiescent Current	lout1=lout2=0mA,		T _A =-40 to +85°C		8.5	14	
	(both channels)	V _{IN1,2} =V _C	N1,2 =2.5V	T _A =-40 to +105°C			14	uA
IQ_BIAS	V _{BIAS} Quiescent Current		JT2=0mA,	T _A =-40 to +85°C		7.5	13	uA
	(single channel)	V _{0N2} =0V V _{IN1,2} =V _{0N1} =2.5V		T _A =-40 to +105°C			13	uA
Is_vbias	V _{BIAS} Shutdown Current	Von1,2=0V, Vout1,2=0V		T _A =-40 to +105°C		0.4	1.0	μA
		V _{ON} =0V	V _{IN} =2.5V V _{IN} =1.8V	T _A =-40 to +85°C		0.005	0.8	- μΑ
				T _A =-40 to +105°C			2.1	
				T _A =-40 to +85°C		0.002	0.5	
	V _{IN} Shutdown			T _A =-40 to +105°C			1.4	
Is_vin	Current (per channel)	Vout=0V		T _A =-40 to +85°C		0.002	0.3	
	(per channer)		V _{IN} =1.05V	T _A =-40 to +105°C			1	
				T _A =-40 to +85°C		0.001	0.3	1
			V _{IN} =0.6V	T _A =-40 to +105°C			0.8	
Ιον	ON-pin Input Leakage Current	V _{ON} =	=5.5V	T _A =-40 to +105°C			0.1	μA

Symbol	Parameter		Test Cond	ditions	Min	Тур	Max	Unit
Resistanc	e Characteristics							
				T _A =25°C		22	30	
			V _{IN} =2.5V	T _A =-40 to +85°C			36	1
				T _A =-40 to +105°C			40	
	On Desistance	0.0		T _A =25°C		21	30	
Ron	On-Resistance	Ι _{ουτ} =-0.2	V _{IN} =1.8V	T _A =-40 to +85°C			35	mΩ
	(per channel)	A		T _A =-40 to +105°C			40	
				T _A =25°C		20	30	
			V _{IN} =1.5V	T _A =-40 to +85°C			35	
				T _A =-40 to +105°C			40	1
	On-Resistance (per channel)	І _{оит} =-0.2 А	V _{IN} =1.2V	T _A =25°C		20	30	mΩ
				T _A =-40 to +85°C			35	
				T _A =-40 to +105°C			40	
			V _{IN} =1.05V	T _A =25°C		20	29	
Ron				T _A =-40 to +85°C			34	
				T _A =-40 to +105°C			39	
				T _A =25°C		20	29	
			V _{IN} =0.6V	T _A =-40 to +85°C			34	
				T _A =-40 to +105°C			39	
Von_hys	ON-pin Hysteresis	V _{IN} =	2.5V	T _A =25°C		45		mV
Р	Output Pull-down	V _{IN} =2.5V	′, V _{ON} =0V,	T - 40 to + 405%		250	200	_
Rpd	Resistance	Vout	=2.5V	T _A =-40 to +105°C		250	300	Ω
т.,	Thermal	1.	unation tompo	roturo rigina		160		°C
Tsd	Shutdown	JU	Inction tempe	rature rising		100		C
	Thermal							
T _{SD_HYS}	Shutdown	Junctio	Junction temperature falling threshold			20		°C
	Hysteresis							

Electrical Characteristics, V_{BIAS}=2.5V (Continued)

Switching Characteristics

Refer to the timing test circuit in the Figure 3 and t_{ON} / t_{OFF} waveforms in the Figure 4 for references to external components used for the test condition in the switching characteristics table.

Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit
VIN=VON=VI	ылы=5V,Tл=25°С (unle	ss otherwise noted)				
t _{ON}	Turn-on time			1400		
toff	Turn-off time			4]
t _R	Vout rise time	R∟=10Ω, C∟=0.1uF,C⊤=1000pF		1740		us
t⊧	Vout fall time			2]
t _D	Delay time			600]
V _{IN} =0.6V, V	V _{ON} =V _{BIAS} =5V,T _A =25°C	(unless otherwise noted)				
ton	Turn-on time			600		
toff	Turn-off time			4]
t _R	Vout rise time	R∟=10Ω, C∟=0.1uF,C⊤=1000pF		285		us
t⊧	Vout fall time			2]
t _D	Delay time			460]
VIN=2.5V, V	/ _{ON} =5V,V _{BIAS} =2.5V,T _A =	25°C (unless otherwise noted)				
ton	Turn-on time			2750		
toff	Turn-off time			6.5]
t _R	Vout rise time	R∟=10Ω, C∟=0.1uF,C⊤=1000pF		2800		us
t⊧	Vout fall time			2.5]
t _D	Delay time			1300]
V _{IN} =0.6V, V	/ _{ON} =5V,V _{BIAS} =2.5V,T _A =	25°C (unless otherwise noted)				
ton	Turn-on time			1550		
t _{OFF}	Turn-off time			9]
t _R	V _{OUT} rise time	R∟=10Ω, C∟=0.1uF,C⊤=1000pF		950		us
t _F	Vout fall time			2		
t⊳	Delay time	R∟=10Ω, C∟=0.1uF,C⊤=1000pF		1050		us

Timing Diagram

Application Circuit

*: This electric circuit only supplies for reference.

Package Dimension

DFN14(3mm×2mm)

Marking

Revision History and Checking Table

Version	Date	Revision Item	Modifier	Function & Spec Checking	Package & Tape Checking
1.0	2021-11-11	Initial Version	Luh	Luh	Liujy
1.1	2022-08-30	Update Typeset	Shib	Luh	Liujy
1.2	2023-04-20	Update Package	Tugz	Luh	Liujy
1.3	2023-05-24	Update Reel	Shib	Luh	Liujy
1.4	2023-08-31	Update Typeset	Tugz	Luh	Liujy