ET3164 - 5.5V, 10A, 5.2mΩ On-Resistance Load Switch with Adjustable Rise Time

General Description

The ET3164 is a single-channel load switch that provides a configurable rise time to minimize inrush current. The device contains an N-channel MOSFET that can operate over an input voltage range of 0.1 V to 5.5 V and can support a maximum continuous current of 10 A.

The switch is controlled by an enable pin (ON), which is capable of interfacing directly with low voltage GPIO signals ($V_{IH} = 0.8 \text{ V}$). The ET3164 device has an optional QOD pin for quick output discharge when switch is turned off, and the fall time (t_F) of the output can be adjusted through an external resistor. There is a Power Good (PG) signal on the device that indicates when the main MOSFET is fully turned on, which can be used to enable a downstream load. Integrated thermal shutdown ensures protection in high temperature environments. The ET3164 is available in a QFN10 package and is characterized for operation over the free-air temperature range of -40°C to +125°C.

Features

- Input Operating Voltage Range (VIN): 0.1V to 5.5V
- Single Supply Voltage Range (V_{BIAS}): 1.5V to 5.5V
- Maximum Continuous Current: 10A
- Low On-Resistance: 5.2mΩ (Typ)
- Open Drain Power Good (PG) Signal
- Adjustable Slew Rate Control
- Adjustable Quick Output Discharge (QOD)
- Thermal Shutdown
- Smart ON pin pull-down (Ron_PD)
 - $ON \ge V_{IH}$ (I_{ON}): 25 nA (Typ)
 - $ON \le V_{IL} (R_{ON_{PD}}): 500 \text{ k}\Omega (Typ)$
- Low Power Consumption:
 - ON State (IQ): 8 µA (Typ)
 - OFF State (IsD): 0.1 μA (Typ)
- -40°C to +125°C Operating Temperature Range
- Part No. and Package

Part No. Package		MSL
ET3164	QFN10 (1.50mm*2.00mm*0.55mm)	Level 1

Applications

- Solid-State Drive (SSD)
- PC and Notebooks
- Industrial PC and Optical module

Pin Configuration

Pin Function

Pi	n	Description
Name	No.	Description
VBIAS	1	Device Bias Supply.
VIN	2,3	Switch Input.
PG	4	Open drain power good signal, asserted high when the output is full load ready.
GND	5	Device Ground.
QOD	6	Quick Output Discharge Pin.
VOUT	7,8	Switch Output.
СТ	9	Timing Pin, can control the slew rate of the output through a capacitor to GND.
ON	10	Enable Pin.

ET3164

Block Diagram

Detailed Description

Overview

The ET3164 device is a single-channel load switch with a $5.2m\Omega$ power MOSFET designed to operate up to 10A. The voltage range is 0.1V to 5.5V. A configurable rise time provides flexibility for power sequencing and minimizes inrush current for high capacitance loads.

The switch is controlled by an enable pin (ON), which is capable of interfacing directly with low voltage GPIO signals down to its V_{IH} level of 0.8 V. The ET3164 device has an optional QOD pin for quick output discharge when switch is turned off, and the fall time (t_F) of the output can be adjusted through an external capacitor. There is a Power Good (PG) signal on the device that indicates when the main MOSFET is fully turned on and the on-resistance is at its final value.

Feature Description

ON and OFF Control

The ON pin controls the state of the switch. The ON pin is compatible with standard GPIO logic threshold so it can be used in a wide variety of applications. When the pin pull-high, the device enables, and when it is low, the device disables.

Adjustable Slew Rate

A capacitor to GND on the CT pin sets the slew rate, and the higher the capacitance the lower the slew rate. The voltage on the CT pin can be as high as 15 V; therefore, the minimum voltage rating for the CT capacitor must be 30 V for optimal performance. Rise times for $V_{BIAS} = 5$ V are shown below.

CT Capacitor	V _{IN} = 5 V	V _{IN} = 3.3 V	V _{IN} = 1.8 V	V _{IN} = 1.2 V	V _{IN} = 0.8 V
0 pF	322us	260us	142us	101us	78us
220 pF	542us	398us	186us	125us	100us
1000 pF	1328us	896us	344us	213us	182us
4700 pF	4840us	3080us	1060us	570us	530us

Table 1. Rise times for V_{BIAS} = 5 V

Adjustable Quick Output Discharge

The device includes a QOD feature that can be configured in one of three ways:

1. QOD pin shorted to VOUT pin. Using this method, the discharge rate after the switch becomes disabled is controlled with the value of the internal resistance R_{QOD}. The value of this resistance is listed in the Electrical Characteristics table.

2. QOD pin connected to VOUT pin using an external resistor. After the switch becomes disabled, the discharge rate is controlled by the value of the total resistance of the QOD.

3. QOD pin is unused and left floating. Using this method, there is no quick output discharge functionality, and the output remains floating after the switch is disabled.

Fall time is dependent on the strength of the configured pulldown resistance on the output.

Thermal Shutdown

When the device temperature reaches 150°C (Typical), the device shuts itself off to prevent thermal damage. After it cools off by about 20°C, the device turns back on. If the device is kept in a thermally stressful environment, then the device oscillates between these two states until it can keep its temperature below the thermal shutdown point.

Power Good (PG) Signal

The device has a Power Good (PG) output signal to indicate the gate of the pass FET is driven high and the switch is on with the on-resistance close to its final value (full load ready). The signal is an active high and open drain output which can be connected to a voltage source through an external pullup resistor. This voltage source can be V_{OUT} from the device or another external voltage. V_{BIAS} is required for PG to have a valid output.

Device Functional Modes

The below table summarizes the device functional modes:

Table 2. Device Function

ON	Fault Condition	VOUT State
L	N/A	Hi-Z
Н	None	V _{IN} (through R _{ON})
X	Thermal shutdown	Hi-Z

Absolute Maximum Ratings

Symbol	Parameters	Value	Unit
V _{IN}	Input Voltage	-0.3-6	V
V _{BIAS}	Bias Supply Voltage	-0.3-6	V
Von, Vpg, Vqod	Control Pin Voltage	-0.3-6	V
Vст	Maximum CT Pin Voltage	15	V
Імах	Maximum Output Current	10	А
TJ	Maximum Junction Temperature	150	°C
Tstg	Storage Temperature Range	-65 to 150	°C
N/	ESD Human Body Model (JESD22-A114)	±4000	V
V _{ESD}	ESD Charged Device Model (JESD22-C101)	±2000	
ILU	Latch-up Current (EIA/JESD78)	±200	mA

Thermal Characteristics

Symbol	Parameters	Value	Unit
Reja	Junction-to-Ambient Thermal Resistance	120	°C/W
Pd_max	Maximum Power Consumption	1.0	W

Recommended Operating Conditions

Symbol	Parameters	Min	Мах	Unit
Vin	Input Voltage	0.1	5.5	V
VBIAS	Bias Supply Voltage	1.5	5.5	V
VIH	ON Pin High Voltage Range	0.8	5.5	V
VIL	ON Pin Low Voltage Range	0	0.35	V
Vpg, Vqod	Control Pin Voltage	0	5.5	V
T _A	Ambient Temperature Range	-40	125	°C

Electrical Characteristics (VBIAS=5V)

Over operating free-air temperature range, unless otherwise noted. Typical values are specified at 25°C and $V_{BIAS} = 5V$, $V_{IN}=5V$.

Symbol	Parameters	Test Conditions	TA	Min	Тур	Max	Unit
Power Cor	sumption		•				
	N. Ouissant		+25°C		8		uA
Iq_vbias	V _{BIAS} Quiescent	$V_{ON} > V_{IH}$	-40°C to 85°C			12	uA
	Current		-40°C to 125°C			12	uA
)/ Chutdaum		25°C		0.1		uA
SD_VBIAS	V _{BIAS} Shutdown	$V_{ON} = 0V$	-40°C to 85°C			0.5	uA
	Current		-40°C to 125°C			1	uA
			25°C		0.1		uA
Isd_vin	V _{IN} Shutdown	$V_{ON} = 0V$	-40°C to 85°C			1	uA
	Current		-40°C to 125°C			7	uA
Ion	ON pin leakage	$V_{ON} = V_{BIAS}$	-40°C to 125°C		0.1		uA
Performan	ce			1			
			25°C		5.2		mΩ
Ron	On-Resistance	V _{IN} = 5V, I _{OUT} = -1A	-40°C to 85°C			8	mΩ
			-40°C to 125°C			9	mΩ
		V _{IN} = 3.3V, I _{OUT} = -1A	25°C		5.2		mΩ
Ron	On-Resistance		-40°C to 85°C			8	mΩ
			-40°C to 125°C			9	mΩ
			25°C		5.2		mΩ
Ron	On-Resistance	V _{IN} = 1.8V, I _{OUT} = -1A	-40°C to 85°C			8	mΩ
			-40°C to 125°C			9	mΩ
			25°C		5.2		mΩ
Ron	On-Resistance	VIN= 1.2V, IOUT= -1A	-40°C to 85°C			8	mΩ
			-40°C to 125°C			9	mΩ
			25°C		5.2		mΩ
Ron	On-Resistance	VIN= 0.8V, IOUT= -1A	-40°C to 85°C			8	mΩ
			-40°C to 125°C			9	mΩ
_	Smart Pull Down		25°C		500		kΩ
$R_{ON_{PD}}$	Resistance		-40°C to 125°C			700	kΩ
_			25°C		55		Ω
R _{QOD}	QOD Resistance		-40°C to 125°C			70	Ω
Vpg_ol	Power Good VoL	I _{PG} = 1mA	-40°C to 125°C			0.2	V
Protection							
T _{TSD}	Thermal Shutdown			130	150	170	°C
 -	Thermal Shutdown						
T _{TSD_HYS}	Hysteresis				20		°C

Electrical Characteristics (VBIAS=3.3V)

Over operating free-air temperature range, unless otherwise noted. Typical values are specified at 25°C and V_{BIAS} = 3.3V, V_{IN} =3.3V.

Symbol	Parameters	Test Conditions	T _A	Min	Тур	Max	Unit
Power Cor	sumption					•	
			25°C		8		uA
IQ_VBIAS	VBIAS Quiescent	$V_{ON} > V_{IH}$	-40°C to 85°C			12	uA
	Current		-40°C to 125°C			12	uA
			25°C		0.1		uA
ISD_VBIAS	V _{BIAS} Shutdown	$V_{ON} = 0V$	-40°C to 85°C			0.5	uA
	Current		-40°C to 125°C			1	uA
)/Churtdaum		25°C		0.1		uA
	V _{IN} Shutdown	$V_{ON} = 0V$	-40°C to 85°C			1	uA
	Current		-40°C to 125°C			7	uA
Ion	ON pin leakage	$V_{ON} = V_{BIAS}$	-40°C to 125°C		0.1		uA
Performan	се			1			
	N On-Resistance VIN=3.3V, IOUT= -1A		25°C		5.2		mΩ
Ron		VIN=3.3V, IOUT= -1A	-40°C to 85°C			8	mΩ
			-40°C to 125°C			9	mΩ
			25°C		5.2		mΩ
Ron	On-Resistance	VIN=1.8V, IOUT= -1A	-40°C to 85°C			8	mΩ
			-40°C to 125°C			9	mΩ
			25°C		5.2		mΩ
Ron	On-Resistance	stance V _{IN} =1.2V, I _{OUT} = -1A	-40°C to 85°C			8	mΩ
			-40°C to 125°C			9	mΩ
			25°C		5.2		mΩ
Ron	On-Resistance	V _{IN} =0.8V, I _{OUT} = -1A	-40°C to 85°C			8	mΩ
			-40°C to 125°C			9	mΩ
D	Smart Pull Down		25°C		500		kΩ
RON_PD	Resistance		-40°C to 125°C			700	kΩ
RQOD			25°C		55		Ω
	QOD Resistance		-40°C to 125°C			70	Ω
V_{PG_OL}	Power Good VoL	I _{PG} = 1mA	-40°C to 125°C			0.2	V
Protection	•						
TTSD	Thermal Shutdown			130	150	170	°C
T	Thermal Shutdown				20		•
TTSD_HYS	Hysteresis				20		°C

7

Electrical Characteristics (VBIAS=1.5V)

Over operating free-air temperature range, unless otherwise noted. Typical values are specified at 25°C and $V_{BIAS} = 1.5V$, $V_{IN}=1.5V$.

Symbol	Parameters	Test Conditions	T _A	Min	Тур	Max	Unit
Power Cor	nsumption						
	N/ Outine cont		25°C		8		uA
Q_VBIAS	IQ_VBIAS VBIAS Quiescent	$V_{ON} > V_{IH}$	-40°C to 85°C			12	uA
_	Current		-40°C to 125°C			12	uA
			25°C		0.1		uA
SD_VBIAS	V _{BIAS} Shutdown Current	$V_{ON} = 0V$	-40°C to 85°C			0.5	uA
	Current		-40°C to 125°C			1	uA
			25°C		0.1		uA
Isd_vin	V _{IN} Shutdown Current	$V_{ON} = 0V$	-40°C to 85°C			1	uA
	Current		-40°C to 125°C			7	uA
Ion	ON pin leakage	$V_{ON} = V_{BIAS}$	-40°C to 125°C		0.1		uA
Performan	ce						
			25°C		5.6		mΩ
Ron	On-Resistance	VIN=1.5V, IOUT= -1A	-40°C to 85°C			8.5	mΩ
			-40°C to 125°C			9.5	mΩ
			25°C		5.6		mΩ
Ron	On-Resistance V_{IN} =1.2V, I_{OUT} = -1A	-40°C to 85°C			8.5	mΩ	
			-40°C to 125°C			9.5	mΩ
			25°C		5.6		mΩ
Ron	On-Resistance	V _{IN} =0.8V, I _{OUT} = -1A	-40°C to 85°C			8.5	mΩ
			-40°C to 125°C			9.5	mΩ
D	Smart Pull Down		25°C		500		kΩ
Ron_pd	Resistance		-40°C to 125°C			700	kΩ
D			25°C		60		Ω
RQOD	QOD Resistance		-40°C to 125°C			70	Ω
V_{PG_OL}	Power Good VoL	I _{PG} = 1mA	-40°C to 125°C	1		0.2	V
Protection							
T _{TSD}	Thermal Shutdown			130	150	170	°C
T _{TSD_HYS}	Thermal Shutdown Hysteresis				20		°C

Switching Characteristics (VBIAS=5V)

Over operating free-air temperature range, unless otherwise noted.

Symbol	Parameters	Test Conditions	Min	Тур	Max	Unit
V _{IN} =5V						
t _{on}	Turn ON time	$R_L = 100\Omega, C_L = 10uF, CT = 1000pF$		1650		us
t _D	Delay time	$R_L = 100\Omega, C_L = 10 \mu F, CT = 1000 \mu F$		380		us
t _R	Rise time	$R_L = 100\Omega, C_L = 10 \mu F, CT = 1000 \mu F$		1300		us
t _{OFF}	Turn OFF time	$R_L = 100\Omega, C_L = 10uF, CT = 1000pF$		45		us
t⊧	Fall time	$R_L = 100\Omega, C_L = 10uF, CT = 1000pF$		1900		us
V _{IN} =3.3V		•				
ton	Turn ON time	$R_{L} = 100\Omega, C_{L} = 10uF, CT = 1000pF$		1250		us
t _D	Delay time	$R_L = 100\Omega$, $C_L = 10uF$, $CT = 1000pF$		350		us
t _R	Rise time	R∟ = 100Ω, C∟ = 10uF, CT = 1000pF		860		us
toff	Turn OFF time	R∟ = 100Ω, C∟ = 10uF, CT = 1000pF		56		us
t⊧	Fall time	R∟ = 100Ω, C∟ = 10uF, CT = 1000pF		2200		us
V _{IN} =1.8V		•				
ton	Turn ON time	R _L = 100Ω, C _L = 10uF, CT = 1000pF		700		us
t⊳	Delay time	R∟ = 100Ω, C∟ = 10uF, CT = 1000pF		330		us
t _R	Rise time	R∟ = 100Ω, C∟ = 10uF, CT = 1000pF		360		us
toff	Turn OFF time	R∟ = 100Ω, C∟ = 10uF, CT = 1000pF		65		us
t⊧	Fall time	R∟ = 100Ω, C∟ = 10uF, CT = 1000pF		2200		us
V _{IN} =1.2V						
t _{ON}	Turn ON time	$R_L = 100\Omega$, $C_L = 10uF$, $CT = 1000pF$		550		us
t⊳	Delay time	$R_L = 100\Omega$, $C_L = 10uF$, $CT = 1000pF$		330		us
t _R	Rise time	$R_L = 100\Omega$, $C_L = 10uF$, $CT = 1000pF$		210		us
toff	Turn OFF time	$R_L = 100\Omega$, $C_L = 10uF$, $CT = 1000pF$		65		us
t⊧	Fall time	$R_L = 100\Omega$, $C_L = 10uF$, $CT = 1000pF$		2100		us
V _{IN} =0.8V						
ton	Turn ON time	$R_L = 100\Omega$, $C_L = 10uF$, $CT = 1000pF$		510		us
t _D	Delay time	$R_L = 100\Omega$, $C_L = 10uF$, $CT = 1000pF$		320		us
t _R	Rise time	$R_L = 100\Omega, C_L = 10uF, CT = 1000pF$		185		us
t _{OFF}	Turn OFF time	$R_L = 100\Omega$, $C_L = 10uF$, $CT = 1000pF$		65		us
t⊧	Fall time	$R_L = 100\Omega, C_L = 10 \mu F, CT = 1000 \mu F$		2000		us

Switching Characteristics (VBIAS=3.3V)

Over operating free-air temperature range, unless otherwise noted.

Symbol	Parameters	Test Conditions	Min	Тур	Max	Unit
V _{IN} =3.3V			•			
t _{ON}	Turn ON time	$R_L = 100\Omega, C_L = 10uF, CT = 1000pF$		1350		us
t _D	Delay time	$R_L = 100\Omega, C_L = 10 \mu F, CT = 1000 \mu F$		520		us
t _R	Rise time	$R_L = 100\Omega, C_L = 10uF, CT = 1000pF$		850		us
toff	Turn OFF time	$R_L = 100\Omega$, $C_L = 10uF$, $CT = 1000pF$		55		us
t⊧	Fall time	$R_L = 100\Omega, C_L = 10uF, CT = 1000pF$		2250		us
V _{IN} =1.8V		•	•			
ton	Turn ON time	$R_L = 100\Omega, C_L = 10uF, CT = 1000pF$		950		us
t⊳	Delay time	$R_L = 100\Omega$, $C_L = 10uF$, $CT = 1000pF$		480		us
t _R	Rise time	R _L = 100Ω, C _L = 10uF, CT = 1000pF		470		us
toff	Turn OFF time	R _L = 100Ω, C _L = 10uF, CT = 1000pF		60		us
t⊧	Fall time	R _L = 100Ω, C _L = 10uF, CT = 1000pF		2250		us
V _{IN} =1.2V			•	•	•	
ton	Turn ON time	$R_L = 100\Omega, C_L = 10uF, CT = 1000pF$		810		us
t⊳	Delay time	$R_L = 100\Omega$, $C_L = 10uF$, $CT = 1000pF$		480		us
t _R	Rise time	$R_L = 100\Omega$, $C_L = 10uF$, $CT = 1000pF$		330		us
toff	Turn OFF time	$R_L = 100\Omega$, $C_L = 10uF$, $CT = 1000pF$		60		us
t⊧	Fall time	$R_L = 100\Omega, C_L = 10uF, CT = 1000pF$		2100		us
V _{IN} =0.8V			•	•	•	
ton	Turn ON time	$R_L = 100\Omega, C_L = 10uF, CT = 1000pF$		740		us
t⊳	Delay time	$R_L = 100\Omega, C_L = 10uF, CT = 1000pF$		470		us
t _R	Rise time	$R_L = 100\Omega, C_L = 10uF, CT = 1000pF$		260		us
t _{OFF}	Turn OFF time	$R_L = 100\Omega, C_L = 10uF, CT = 1000pF$		60		us
t⊧	Fall time	$R_L = 100\Omega, C_L = 10 \mu F, CT = 1000 \mu F$		2000		us

Switching Characteristics (VBIAS=1.5V)

Over operating free-air temperature range, unless otherwise noted.

Symbol	Parameters	Test Conditions	Min	Тур	Max	Unit
V _{IN} =1.5V		•	·			
t _{ON}	Turn ON time	$R_L = 100\Omega, C_L = 10uF, CT = 1000pF$		1140		us
t _D	Delay time	$R_L = 100\Omega$, $C_L = 10uF$, $CT = 1000pF$		620		us
t _R	Rise time	R _L = 100Ω, C _L = 10uF, CT = 1000pF		520		us
toff	Turn OFF time	R _L = 100Ω, C _L = 10uF, CT = 1000pF		60		us
t⊧	Fall time	$R_L = 100\Omega$, $C_L = 10uF$, $CT = 1000pF$		2200		us
V _{IN} =1.2V						
ton	Turn ON time	R _L = 100Ω, C _L = 10uF, CT = 1000pF		1020		us
t _D	Delay time	$R_L = 100\Omega$, $C_L = 10uF$, $CT = 1000pF$		610		us
t _R	Rise time	$R_L = 100\Omega$, $C_L = 10uF$, $CT = 1000pF$		400		us
toff	Turn OFF time	R _L = 100Ω, C _L = 10uF, CT = 1000pF		60		us
t⊧	Fall time	R _L = 100Ω, C _L = 10uF, CT = 1000pF		2200		us
V _{IN} =0.8V						
ton	Turn ON time	R _L = 100Ω, C _L = 10uF, CT = 1000pF		890		us
t _D	Delay time	R _L = 100Ω, C _L = 10uF, CT = 1000pF		600		us
t _R	Rise time	R _L = 100Ω, C _L = 10uF, CT = 1000pF		290		us
toff	Turn OFF time	R _L = 100Ω, C _L = 10uF, CT = 1000pF		60		us
t⊧	Fall time	$R_L = 100\Omega$, $C_L = 10uF$, $CT = 1000pF$		2100		us

Timing Diagram

Application Circuits

Package Dimension

QFN-10

Marking

Revision History and Checking Table

Version	Date	Revision Item	Modifier	Function & Spec Checking	Package & Tape Checking
0.0	2023-11-14	Initial Version	Zhujy	Marj	Liujy
1.0	2024-03-15	Update EC Table	Tugz	Zhujy	Liujy