3.5V, 6A, Low Resistance Load Switch

General Description

The ET3161 is a small, ultra-low Resistance, signal channel load switch with controlled turn on. The device contains an N-channel MOSFET that can operate over an input voltage range of 0.8V to 3.5V and support a maximum continues current of 6A.

The combination of ultra-low RON and high current capability of the device makes it ideal for driving processor rails with very tight voltage dropout tolerances. Quick rise time of the device allows for power rails to come up quickly when the device is enabled, thereby reducing response time for power distribution. The switch can be independently controlled via the ON terminal, which is capable of interfacing directly with low-voltage control signals originating from micro-controllers or low voltage discrete logic. The device further reduces the total solution size by integrating a 240Ω pull-down transistor for quick output discharge (QOD) when the switch is turned off.

The ET3161 is available in a small, space-saving 3mm*3mm DFN8LQ package with integrated thermal pad allowing for high power dissipation. The device is characterized for operation over the free-air temperature range of -40°C to 85°C.

Features

- Integrated Single Channel Load Switch
- VBIAS Voltage Range: 3V to 5.5V
- Input Voltage Range: 0.8V to 3.5V
- Ultra low On Resistance:
 - -- R_{ON}=4.8mΩ at V_{IN}=1.05V (V_{BIAS}=5V)
- 6A Maximum Continuous Switch Current
- Low<1uA Off Switch Current
- Low Control Input Threshold Enable use of 1.2V/1.8V/2.5V/3.3V Logic
- Quick Output Discharge (QOD)
- DFN8 (3mm ×3mm) Package with Thermal Pad
- Controlled Slew Rate:
 - -- t_R=4.2us at V_{IN}=1.05V (V_{BIAS}=5V)
- ESD Protected: Above 4.0kV HBM, 2.0kV CDM Pass

Application

- Ultra-book TM/Notebooks
- Desktops
- Servers
- Set-top Boxes
- Telecom Systems
- Tablet PC

Pin Configuration

Pin Function

Pin No.	Pin Name	Description
1, 2	VIN	Switch input. Place ceramic bypass capacitor(s) between this terminal and GND.
3	VBIAS	Bias voltage. Power supply to the device.
4	ON	Active high switch control input. Do not leave floating.
5	GND	GND.
6,7,8	VOUT	Switch output. Place ceramic bypass capacitor(s) between this terminal and GND.

Block Diagram

Functional Description

Input Capacitor

To limit the voltage drop on the input supply caused by transient inrush current when the switch turns on into a discharged load capacitor or short-circuit, a capacitor must be placed between the V_{IN} and GND pins. A 1uF ceramic capacitor, C_{IN} , placed close to the pins is usually sufficient.

Higher-value C_{IN} can be used to reduce the voltage drop in higher-current applications. When switching heavy loads, it is recommended to have an input capacitor 10 times higher than the output capacitor to avoid excessive voltage drop.

Output Capacitor

Due to the integrated body diode in the NMOS switch, a C_{IN} greater than C_L is highly recommended. A C_L greater than C_{IN} can cause V_{OUT} to exceed V_{IN} when the system supply is removed. This could result in current flow through the body diode from V_{OUT} to V_{IN} . A C_{IN} to C_{OUT} ratio of 10 to 1 is recommended for minimizing V_{IN} dip caused by inrush currents during startup, however a 10 to 1 ratio for capacitance is not required for proper functionality of the device. A ratio smaller than 10 to 1 (such as 1 to 1) could cause a V_{IN} dip upon turn-on due to inrush currents.

ON/OFF Control

The ON terminal controls the state of the load switch, and asserting the terminal high (active high) enables the switch. The ON terminal is compatible with standard GPIO logic threshold and can be used with any micro-controller or discrete logic with 1.2V or higher GPIO voltage. This terminal cannot be left floating and must be tied either high or low for proper functionality.

V_{IN} and V_{BIAS} Voltage Range

For optimal R_{ON} performance, make sure V_{IN} \leq (V_{BIAS}-1.95V). For example, in order to have V_{IN}=3.5V, V_{BIAS} must be 5.5V. The device will still be functional if V_{IN}>(V_{BIAS}-1.95V) but it will exhibit R_{ON} greater than what is listed in the Electrical Characteristics, V_{BIAS}=5.0V table. See Figure 3 for an example of a typical device. Notice the increasing R_{ON} as V_{IN} increase. Be sure to never exceed the maximum voltage rating for V_{IN} and inrush currents.

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Para	Min	Max	Unit	
VIN	V _{IN} to	-0.3	4.0	V	
VBIAS	VBIAS	to GND	-0.3	6.0	V
Vout	Vout	to GND	-0.3	4.0	V
Von	ON t	o GND	-0.3	6.0	V
Імах	Maximum Continu	ious Switch Current		6.0	А
IPLS	Maximum Pulsed Switch Curre		8.0	А	
PD	Power Dissipa		1.0	W	
Tstg	Storage Junct	-65	+150	°C	
θ _{JA}	Junction-to-ambier	nt thermal resistance		44.6	°C/W
TJ	Maximum junc	tion temperature		150	°C
ΤL	Maximum lead tempera	ature (10s soldering time)		300	°C
		Human Body Model,	±4.0		
V	Electrostatic Discharge	JESD22-A114	±4.0		kV
VESD	Capability	Charged Device Model,	±2.0		ĸν
		JESD22-C101	±2.0		

Recommended Operating Conditions

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. ETEK does not recommend exceeding them or designing to Absolute Maximum Ratings.

Symbol	Param	Min	Max	Unit	
VIN	Input V	oltage	0.8	VBIAS-1.95	V
VBIAS	Bias volta	3	5.5	V	
Von	ON voltaç	0	5.5	V	
Vout	Output volt		VIN	V	
VIH_ON	High-level voltage ON V _{BIAS} =3V to 5.5V		1.2	5.5	V
V _{IL_ON}	Low-level voltage ON V _{BIAS} =3V to 5.5V		0	0.5	V
TA	Ambient Operati	-40	+85	°C	

Electrical Characteristics, V_{BIAS}=5.0V

Unless otherwise noted, the specification in the following table applies over the operating ambient temperature T_A =-40 to +85°C and V_{BIAS} =5.0V; typical values are for T_A =25°C.

Symbol	Parameter	Test Conditions		Min	Тур	Max	Unit		
Power Su	pply and Current								
	VBIAS Quiescent	I _{OUT} =0, V _{IN} =3V				0.4	4.0		
I_Q, V_{BIAS}	Current		V==V _{BIAS} =		0.4	1.0	uA		
I _{SD} ,V _{BIAS}	V _{BIAS} Shutdown Current		V _{ON} =0V, V _O	_{UT} =0V		0.4	1.0	uA	
				V _{IN} =3.0V			0.4		
	V _{IN} Shutdown	V _{ON} =0	V	$V_{IN}=2.5V$			0.4		
$I_{\text{SD}}, V_{\text{IN}}$	Current			V _{IN} =2.0V			0.4	uA	
	Current	Vout=0V -		V _{IN} =1.05V			0.4	0.4	
				V _{IN} =0.8V			0.4		
Ion	ON Terminal Input		V _{ON} =5.5		0.1	0.1	uA		
ION	Leakage Current		VON-3.				0.1	uA	
Resistanc	e Characteristics								
			V _{IN} =3.0V	T _A =25°C		6.2	11.0		
			VIN-3.0V	T _A =-40 to +85°C			12.0	-	
			V _{IN} =2.5V	T _A =25°C		5.4	7.0		
			VIN-2.3V	T _A =-40 to +85°C			8.0		
Ron	On-Resistance	I _{OUT} =-1A		T _A =25°C		5.1	5.8	mΩ	
RON	On-Resistance	V _{BIAS} =5.0V	V _{IN} =2.0V	T _A =-40 to +85V			6.7	11122	
			V _{IN} =1.05V	T _A =25°C		4.8	5.3		
			VIN-1.05V	T _A =-40 to +85°C			6.2		
				T _A =25°C		4.7	5.3		
		V _{IN} =0.8V T _A =-40 to +85°C				6.1			
Rpd	Output Pull-down Resistance	V _{IN} =5.0V, V _{ON} =0V, V _{OUT} =1V				240	300	Ω	

Electrical Characteristics, V_{BIAS}=3.0V

Unless otherwise noted, the specification in the following table applies over the operating ambient temperature T_A =-40 to +85°C and VBIAS=3.0V; typical values are for T_A =25°C.

Symbol	Parameters	Conditions			Min	Тур	Мах	Unit		
Power Su	Power Supply and Current									
	VBIAS Quiescent		I _{OUT} =0, V _{IN} =1.0V			0.2	1.0			
Iq,Vbias	Current		VON=VBIAS=	3.0V		0.2	1.0	uA		
	VBIAS Shutdown			-0)/		0.2	10			
I_{SD}, V_{BIAS}	Current		V _{ON} =0V, V _O	JT-UV		0.2	1.0	uA		
	V _{IN} Shutdown	V _{ON} =0\	/	V _{IN} =1.05V			0.4			
Isd,Vin	Current Vout=0V		/ V _{IN} =0.8V				0.4	uA		
	ON Terminal Input	V _{ON} =5.5V					0.1			
Ion	Leakage Current							uA		
Resistanc	e Characteristics									
	On-Resistance I _{OUT} =-1A V _{BIAS} =3.0V			T _A =25°C		6.2	12.0			
P		louτ=-1A	V _{IN} =1.05V T _A =-40 to +85°C				13.0			
R _{ON}		V _{BIAS} =3.0V		T _A =25°C		5.8	8.0	mΩ		
		V _{IN} =0.8V T _A =-40 to +85°C				9.0				
R _{PD}	Output Pull-down	<u>ار ار ا</u>				240	200	0		
	Resistance	V _{IN} =3.0V, V _{ON} =0V, V _{OUT} =1V				240	300	Ω		

Switching Characteristics(1)(2)

Refer to the timing test circuit in the Figure 3 (unless otherwise noted) for references to external components used for the test condition in the switching characteristics table.

Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit		
V _{IN} =2.5V, V _{ON} =V _{BIAS} =5.0V,T _A =-40°C to 85°C								
ton	Turn-on time			7.5	45.0			
t _{OFF}	Turn-off time			6.0	30.0			
t _R	V _{OUT} rise time	R _L =10Ω, C _L =0.1uF		7.5	36.0	us		
t _F	V _{OUT} fall time			3.0	25.0			
t _D	Delay time			5.5	30.0			
V _{IN} =1.05V	, Von=Vbias=5.0V,Ta	=-40°C to 85°C						
t _{ON}	Turn-on time	L=2.2uH (DCR=0.33Ω)	7.0	20.5	55.0			
t _{OFF}	Turn-off time	urn-off time CL=2×22uF		4600				
t _R	Vout rise time	Refer to Typical Application Powering Rails	4.0	27.0	40.0	us		
t⊧	Vout fall time	Sensitive to Ringing and Over-voltage due to		25000				
t⊳	Delay time	Fast Rise Time and Figure 5	6.0	10.0	45.0			

Switching Characteristics (Continued)

Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit			
V _{IN} =1.05V	V _{IN} =1.05V, V _{ON} =V _{BIAS} =5.0V,T _A =-40°C to 85°C								
ton	Turn-on time			8.5	60.0				
toff	Turn-off time			9.0	70.0				
t _R	V _{OUT} rise time	R _L =2.0Ω, C _L =0.1uF		6.0	30.0	us			
t⊧	V _{OUT} fall time			2.0	25.0				
t⊳	Delay time			6.0	35.0				
V _{IN} =0.8V,	Von=VBIAS=5.0V,TA=	-40°C to 85°C							
t _{ON}	Turn-on time			8.0	40.0				
t _{OFF}	Turn-off time			10.0	45.0				
t _R	Vout rise time	R∟=10Ω, C∟=0.1uF		4.0	25.0	us			
t⊧	Vout fall time			3.0	30.0				
t⊳	Delay time			6.0	35.0				
VI _N =1.05∖	/, V _{ON} =5.0V, V _{BIAS} =3.	.0V, T _A =-40°C to 85°C							
ton	Turn-on time			16.0	65.0				
toff	Turn-off time			8.0	35.0				
t _R	Vout rise time	R∟=10Ω, C∟=0.1uF		10.0	40.0	us			
t⊧	Vout fall time			3.0	25.0				
t⊳	Delay time			11.0	45.0				
V _{IN} =0.8V,	Von=5V, Vbias=3.0V,	T _A =-40°C to 85°C							
ton	Turn-on time			15.0	65.0				
toff	Turn-off time			9.0	35.0]			
t _R	Vout rise time	R∟=10Ω, C∟=0.1uF		8.0	35.0	us			
t⊧	Vout fall time			3.0	30.0				
t _D	Delay time			11.0	45.0				

Note(1) This parameter is guaranteed by design and characterization; not production tested.

 $\textit{\textit{Note(2)}}$ ton / toFF / t_R / t_F / t_D are defined in Figure 4.

Timing Diagram

Application Circuit

*: This electric circuit only supplies for reference.

Package Dimension

DFN8

Reel

Revision History and Checking Table

Version	Date	Revision Item	Modifier	Function & Spec	Package & Tape
				Checking	Checking
0.0	2020-03-06	Preliminary Version	Zhujl	Luh	Zhujl
1.0	2020-06-09	Initial Version	Liujy	Luh	Liujy
1.1	2021-8-6	Update RON	Liujy	Luh	Liujy
1.2	2022-07-05	Update typeset	Shib	Luh	Liujy