3A TRCB Load Switch with Auto-discharge

General Description

The ET3159 advanced load management switches target applications requiring a highly integrated solution. It disconnects loads powered from DC Power Rail (<6V) with stringent off-state current targets and high load capacitances (up to 200uF). Each switch consists of slew-rate controlled low-impedance MOSFET Switch and other integrated analog features. The slew-rate controlled turn-on characteristic prevents inrush-current and the resulting excessive voltage droop on power rails.

The ET3159 has True Reverse Current Blocking (TRCB) function blocking unwanted reverse current from OUT to IN during ON/OFF state. These devices have exceptionally low off-state current drain (<1uA max) which facilitate compliance in very low stand-by power applications.. Switch control is managed by a logic input (Active HIGH) capable of interfacing directly with low voltage control signal/GPIO with no external pull-down resistor required,In ET3159, 90 Ω on-chip load resistor is added for output quick discharge when switch is turned off (EN=0V).

ET3159 is offered DFN4(1.2×1.6) package, which is ideal for small form factor portable equipment .

Features

- 1.5V to 6 V Operation voltage range
- Low quiescent current is 8uA typical
- Slew rate/inrush control with t_R is 0.6ms typical
- Typical R_{DS(ON)} is 75mΩ at V_{IN}=3.6V
- True reverse current blocking (TRCB)
- With auto discharge function when switch turned off
- ESD protected: Above 8kV (contact) IEC,4kV HBM, 1.5kV CDM
- Part No. and package

Part No.	Package	MSL	
ET3159	DFN4 (1.2mm ×1.6mm)	Level 1	

Application

- PDAs / smart phones
- Notebook / computers
- Portable media players
- Digital camera
- GPS navigation devices
- Data storage devices
- Optical, industrial, medical, and health-care devices

Pin Configuration

Pin Function

Pin Number	Name	Function	
1	IN	This is the input pin of the switch	
2,5	GND	Ground connection	
3	EN	Enable input	
4	OUT	This is the output pin of the switch	

Block Diagram

Functional Description

The ET3159 is low-R_{ON} P-channel load switches with controlled turn on and TRCB (True Reverse Current Blocking). The core of each device is a P-channel MOSFET and controller capable of functioning over a wide input operating range of 1.5 to 6.0V. The EN pin, an active HIGH GIOP input, controls the state of the switch. TRCB functionality blocks unwanted reverse current during ON and OFF when OUT higher than IN is applied.

Input Capacitor

To limit the voltage drop on the input supply caused by transient inrush current when the switch turns on into a discharged load capacitor or short-circuit, a capacitor must be placed between the IN and GND pins. At least 1μ F ceramic capacitor, C_{IN}, placed close to the pins is usually sufficient. Higher-value C_{IN} can be used to reduce the voltage drop in higher-current applications.

Output Capacitor

At least 0.1μ F capacitor, C_{OUT}, should be placed between the OUT and GND pins. This capacitor prevents parasitic board inductance from forcing OUT below GND when the switch is on.

Board Layout

For best performance, all traces should be as short as possible. To be most effective, the input and output capacitors should be placed close to the device to minimize the effect that parasitic trace inductance may have on normal and short-circuit operation.

Using wide traces or large copper planes for all pins (IN, OUT, EN, and GND) helps minimize the parasitic electrical effects along with minimizing the case ambient thermal impedance.

Pulse Current Capability

The device is mounted on the evaluation board shown in the PCB layout section. It is loaded with pulses of 6 A and 1 ms for periods of 4.6 ms.

The ET3159 can safely support 6A pulse current repetitively at 25 °C.

Switch Non-Repetitive Pulsed Current

The ET3159 can withstand inrush current of up to 15A for 100µs at 25 °C when heavy capacitive loads are connected and the part is already enabled.

Absolute Maximum Ratings

F	Value	Unit		
Supply Ir	- 2 to 7	V		
Enable Input Voltage (EN) ,	- 2 to 7	V		
Maximum Continu	ous Switch Current (I _{MAX}) ⁽³⁾	3		
Maximum Repetitive Pulsed	d Current (1 ms, 10 % Duty Cycle) ⁽³⁾	6	А	
Maximum Non-Repetitive Pu	15			
	Human Body Model, JESD22-A114	4.0	КV	
ESD/Electrostatic	Charged Device Model, JESD22-C101	1.5		
Discharge Capability	ESD Withstand Voltage IEC61000-4-2	8.0(Contact)		
Junction	- 40 to 150	°C		
Thermal	170	°C/W		
Max Pow	735	mW		

Notes:

- **1.** ET3159 can pass the 10V test (Instant Contact): can support up to 100mS 10V pulse.
- 2. Device mounted with all leads and power pad soldered or welded to PC board.
- **3**. $T_A = 25 \ ^{\circ}C$.

Recommended Operating Range

Parameter	Value	Unit
Input Voltage Range (V _{IN})	1.5 to 6.0	V
Operating Junction Temperature Range (T _A)	-40 to 85	°C

Electrical Characteristics

 $(V_{\text{IN}}=5V,\,T_{\text{A}}=-40^{\circ}\text{C}\text{ to }85^{\circ}\text{C}$,Typical values are at $T_{\text{A}}=25^{\circ}\text{C}\text{)}$

Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit
V _{IN} (a)	Operating Voltage		1.5		6	V
		$V_{IN} = 3.6 V, EN = active$		8		
la	Quiescent Current	V _{IN} = 4.3 V, EN = active		10		
		$V_{IN} = 5 V, EN = active$		11	14	uA
IQ_OFF	Off Supply Current	EN = inactive, OUT = Open			1	
	Off Switch Current	EN = inactive, OUT = GND			1.2	
	On-Resistance	$V_{IN} = 3.6 V, I_L = 100 mA,$		75	05	
Rds(on)		T _A = 25 °C	75		95	mΩ
		$V_{IN} = 4.3 V, I_L = 100 mA,$	70		90	
		T _A = 25 °C				
		$V_{IN} = 5 V, I_L = 100 mA,$	65		85	
		T _A = 25 °C				

Electrical Characteristics(Continued)

Symbol	Parameter	Test Conditions	Min	Тур	Мах	Unit
D	Output Pull Down	$V_{IN} = 5V, EN = 0V,$		90	150	Ω
RPD	Resistance	$V_{OUT}=1V, T_A = 25^{\circ}C$				
Ma	EN Input Low	1/10 - 15 1/106 V		0.4	0.4	
VIL	Voltage	VIN = 1.5 V 100V			0.4	V
M.	EN Input High	$V_{\rm m} = 1.5 V_{\rm r}$ to 6V	15			v
V IH	Voltage	$VIN = 1.5 \ V \ 10 \ 0 V$	1.5			
lonuz	EN Input Leakage	$V_{EN} = 5 V, V_{IN} = 0 V$			10	
ISINK		V _{EN} =0 V, V _{IN} =5 V	-1			uA
Pou po	Pull-Down		0.6	1	1 /	MO
NON_PD	Resistance at EN pin		0.0	I	1.4	IVIL2
	RCB Protection			15		m\/
V 1_RCB	Trip Point ^(b)	VOUT - VIN		43		111V
	RCB Protection			25		mV
VR_RCB	Release Trip Point ^(b)	VIN - VOUT				
	RCB Hysteresis ^(b)			70		mV
1	Vout Shutdown	Ven=0V, Vout=5V,			2	μA
ISD_OUT	Current	V _{IN} =Short to GND				
Trop ou	RCB Response Time	V _{OUT} - V _{IN} =100mV	4.0			
I RCB_ON	when Device EN ^(b)	V _{EN} =High		4.0		μs
Trop.org	RCB Response Time	V _{OUT} - V _{IN} =100mV		25		116
I RCB_OFF	Device OFF ^(b)	V _{EN} =Low		2.0		μο
t DON	Turn-On Delay ^(c)			0.4		ms
t _R	V _{OUT} Rise Time ^(c)	$V_{\rm IN} = 5V, R_{\rm L} = 15002,$		0.6		ms
ton	Turn-On Time ^(d)	$G_{L} = 100 \mu r, 1A = 25 G$		1.0		ms
t _{DOFF}	Turn-Off Delay ^(c)			0.2		ms
t⊨	V _{OUT} Fall Time ^(e)	$V_{IN} = 5V, R_L = 150\Omega,$		9.4		ms
toff	Turn-Off Time ^(e)	$C_{L} = 100 \mu r, 1_{A} = 25^{\circ} C$		9.6		ms

Notes:

a. If IN is float state, OUT is forbidden to connect power.

b. This parameter is guaranteed by design and characterization; not production tested.

c. $t_{DON}/t_{DOFF}/t_R/t_F$ are defined in Figure 2.

d. $t_{ON} = t_R + t_{DON}$

e. $t_{OFF} = t_F + t_{DOFF}$

5

Timing Diagram

Typical Characteristics

Internally regulated, $T_A = 25$ °C, unless otherwise noted

Application Circuits

Package Dimension

DFN4

Revision History and Checking Table

Version	Date	Revision Item	Modifier	Function & Spec Checking	Package & Tape Checking
1.7	2023-3-29	Update Typeset	Shi Bo	Liuxm	Zhu Jun Li