3A Load Switch with TRCB Function

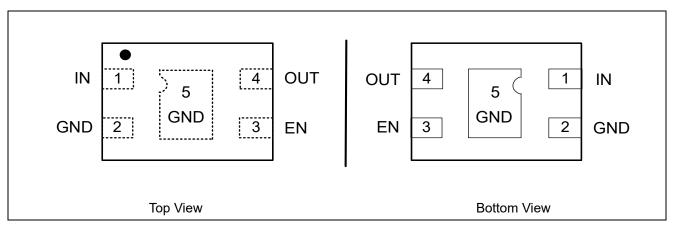
General Description

The ET3158A advanced load management switches target applications requiring a highly integrated solution. It disconnects loads powered from DC Power Rail (<6V) with stringent off-state current targets and high load capacitances (up to 200uF). Each switch consists of slew-rate controlled low-impedance MOSFET Switch and other integrated analog features. The slew-rate controlled turn-on characteristic prevents inrush-current and the resulting excessive voltage droop on power rails.

The ET3158A has True Reverse Current Blocking (TRCB) function blocking unwanted reverse current from OUT to IN during ON/OFF state. These devices have exceptionally low off-state current drain (<1uA max) which facilitate compliance in very low stand-by power applications. The input voltage range operates from 1.5V to 6.0V DC to fulfill a wide range of applications in consumer, optical, medical, storage, portable, and industrial device power management. Switch control is managed by a logic input (Active HIGH) capable of interfacing directly with low voltage control signal/GPIO with no external pull-down resistor required.

ET3158A is offered DFN4(1.2×1.6) package, which is ideal for small form factor portable equipment .

Features


- 1.5V to 6 V Operation voltage range
- Low quiescent current is 8uA typical
- Slew rate/inrush control with t_R is 2.7ms typical
- Typical R_{DS(ON)} is 33mΩ at V_{IN}=3.6V
- True reverse current blocking (TRCB)
- ESD protected: Above 8kV (contact) IEC,4kV HBM, 1.5kV CDM
- Part No. and package

Part No.	Package	MSL
ET3158A	DFN4 (1.2mm ×1.6mm)	Level 1

Application

- PDAs / smart phones
- Notebook / computers
- Portable media players
- Digital camera
- GPS navigation devices
- Data storage devices
- Optical, industrial, medical, and health-care devices

Pin Configuration

Pin Function

Pin Number	Name	Function
1	IN	This is the input pin of the switch
2,5	GND	Ground connection
3	EN	Enable input
4	OUT	This is the output pin of the switch

Block Diagram

Functional Description

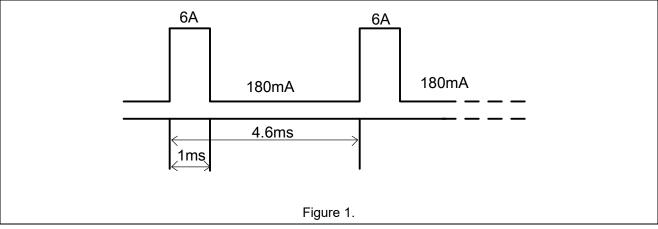
The ET3158A is low-R_{ON} P-channel load switches with controlled turn on and TRCB (True Reverse Current Blocking). The core of each device is a P-channel MOSFET and controller capable of functioning over a wide input operating range of 1.5 to 6.0V. The EN pin, an active HIGH GIOP input, controls the state of the switch. TRCB functionality blocks unwanted reverse current during ON and OFF when OUT higher than IN is applied.

Input Capacitor

To limit the voltage drop on the input supply caused by transient inrush current when the switch turns on into a discharged load capacitor or short-circuit, a capacitor must be placed between the IN and GND pins. At least 1μ F ceramic capacitor, C_{IN}, placed close to the pins is usually sufficient. Higher-value C_{IN} can be used to reduce the voltage drop in higher-current applications.

Output Capacitor

At least 0.1µF capacitor, C_{OUT}, should be placed between the OUT and GND pins. This capacitor prevents parasitic board inductance from forcing OUT below GND when the switch is on.


Board Layout

For best performance, all traces should be as short as possible. To be most effective, the input and output capacitors should be placed close to the device to minimize the effect that parasitic trace inductance may have on normal and short-circuit operation.

Using wide traces or large copper planes for all pins (IN, OUT, EN, and GND) helps minimize the parasitic electrical effects along with minimizing the case ambient thermal impedance.

Pulse Current Capability

The device is mounted on the evaluation board shown in the PCB layout section. It is loaded with pulses of 6 A and 1 ms for periods of 4.6 ms.

The ET3158A can safely support 6A pulse current repetitively at 25 °C.

Switch Non-Repetitive Pulsed Current

The ET3158A can withstand inrush current of up to 15A for 100µs at 25 °C when heavy capacitive loads are connected and the part is already enabled.

Absolute Maximum Ratings

F	Value	Unit			
Supply Ir	- 2 to 7	v			
Enable Input Voltage (EN) ,	Enable Input Voltage (EN) , Input resistance is greater than $1k\Omega$				
Maximum Continu	Maximum Continuous Switch Current (I _{MAX}) ⁽³⁾				
Maximum Repetitive Pulsed	d Current (1 ms, 10 % Duty Cycle) ⁽³⁾	6	А		
Maximum Non-Repetitive Pu	Maximum Non-Repetitive Pulsed Current (100µs, EN = Active) ⁽³⁾				
	Human Body Model, JESD22-A114	4.0	кv		
ESD/Electrostatic Discharge Capability	Charged Device Model, JESD22-C101	1.5			
Discharge Capability	ESD Withstand Voltage IEC61000-4-2	8.0(Contact)			
Junction	- 40 to 150	°C			
Thermal I	170	°C/W			
Power	Power Dissipation (P _D)				

Notes:

- **1.** ET3158A can pass the 10V test (Instant Contact): can support up to 100mS 10V pulse.
- 2. Device mounted with all leads and power pad soldered or welded to PC board.
- **3**. T_A = 25 °C.

Recommended Operating Range

Parameter	Value	Unit
Input Voltage Range (V _{IN})	1.5 to 6.0	V
Operating Junction Temperature Range (T _A)	-40 to 85	°C

Electrical Characteristics

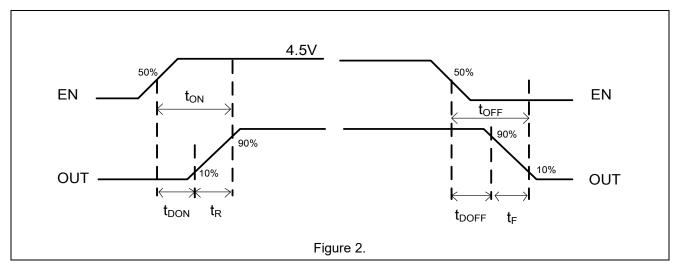
(V_IN = 5V, T_A = -40 ^{\circ}C to 85 ^{\circ}C ,Typical values are at T_A = 25 ^{\circ}C)

Symbol	Parameter	Test Conditions	Min	Тур	Мах	Unit
	Operating		15		6	V
VIN	Voltage		1.5		0	v
		V _{IN} = 1.8 V, EN = active		4		
	Quiescent Current	V_{IN} = 2.5 V, EN = active		6		
Iq_on		V _{IN} = 3.6 V, EN = active		8		
		V _{IN} = 4.3 V, EN = active		10		
		V _{IN} = 5 V, EN = active		11	14	uA
I	Off Supply				1	
IQ_OFF	Current	EN = inactive, OUT = open			1	
Ids_off	Off Switch	EN = inactive, OUT = GND			1.2	
	Current	EN – mactive, OOT – GND			1.2	

Electrical Characteristics(Continued)

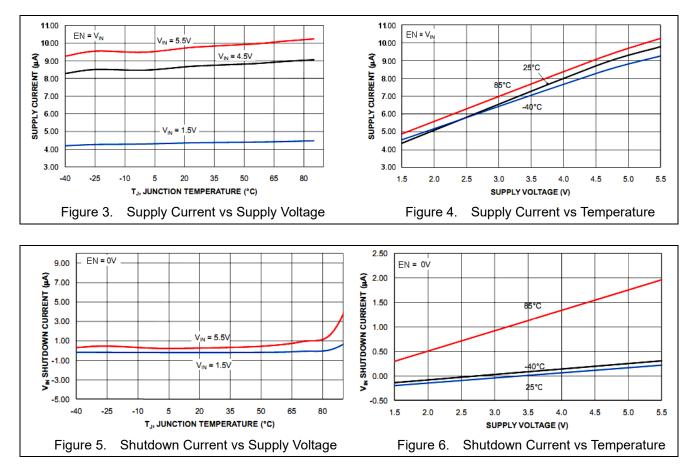
Symbol	Parameter	Test Conditions	Min	Тур	Мах	Unit	
		V_{IN} = 1.8 V, I _L = 100mA		68			
	On Registeres	V _{IN} = 2.5 V, I _L = 100mA		46			
R _{DS(on)}	On-Resistance T _A = 25°C ^(a)	V _{IN} = 3.6 V, I _L = 100mA		33	55	mΩ	
	TA - 25 C(4)	V _{IN} = 4.3 V, I _L = 100mA		29	49		
		$V_{IN} = 5 V, I_L = 100 mA$		26	45		
	EN Input	V _{IN} = 1.8 V to 5.5V			0.6		
VIL	Low Voltage	V_{IN} = 2.6 V to 5.5V			0.8	V	
V _{IH}	EN Input High Voltage	V _{IN} = 1.8 V to 5.5V	1.5			v	
		V _{EN} = 5.5 V,V _{IN} =0 V	-10 10				
ISINK	EN Input Leakage	V _{EN} =0 V, V _{IN} =5.5 V	-1		1	uA	
D	Pull-Down	V _{IN} =1.5V to 6.0V,		1		MΩ	
	Resistance at EN pin	T _A = -40 to 85°C		1		10122	
Vt_rcb	RCB Protection Trip Point	Vout - Vin		45		mV	
Vr_rcb	RCB Protection Release Trip Point	Vin - Vout		25		mV	
	RCB Hysteresis			70		mV	
	V _{OUT} Shutdown	V _{EN} =0V, V _{OUT} =5.5V,					
ISD_OUT	Current	V _{IN} =Short to GND			2	μA	
T _{RCB_ON}	RCB Response Time when Device EN	V _{OUT} - V _{IN} =100mV V _{EN} =High		4.0		μs	
T _{RCB_OFF}	RCB Response Time Device OFF	V _{OUT} - V _{IN} =100mV V _{EN} =Low		2.5		μs	
t DON	Turn-On Delay ^(a.b)	V _{IN} =4.5V, R _L =5Ω,		1		ms	
t _R	Vout Rise Time ^(a,b)	C∟=100µF,		2		ms	
ton	Turn-On Time ^(a,c)	T _A =25°C		3		ms	
t DON	Turn-On Delay ^(a,b)	V _{IN} =4.5V, R _L =150Ω,		1		ms	
t _R	Vout Rise Time ^(a,b)	C∟=100µF,		1.5		ms	
ton	Turn-On Time ^(a,c)	T _A =25°C		2.5		ms	
t doff	Turn-Off Delay ^(a,b)	V _{IN} =4.5V, R _L =150Ω,		1.8		ms	
t⊧	Vout Fall Time ^(a,b)	C∟=100µF,		34		ms	
toff	Turn-Off Time ^(a,d)	T _A =25°C		35		ms	

Notes:

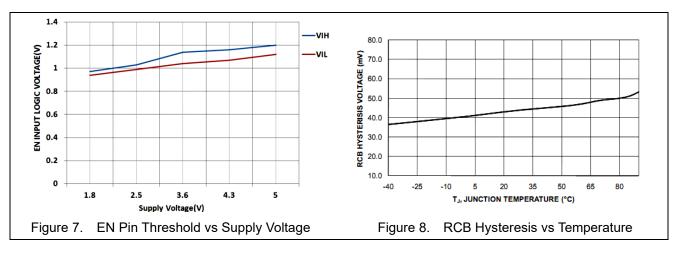

a. This parameter is guaranteed by design and characterization; not production tested.

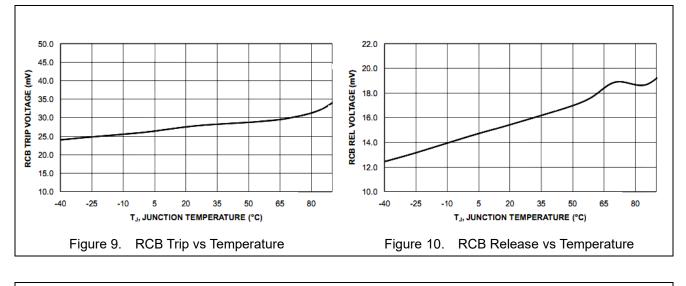
b. $t_{DON} / t_{DOFF} / t_R / t_F$ are defined in Figure 2.

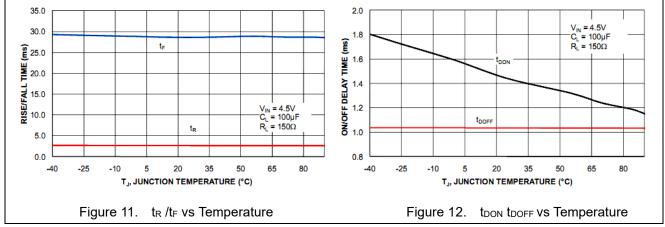
c. ton=t_R + t_{DON}


d. toff=tf + tdoff

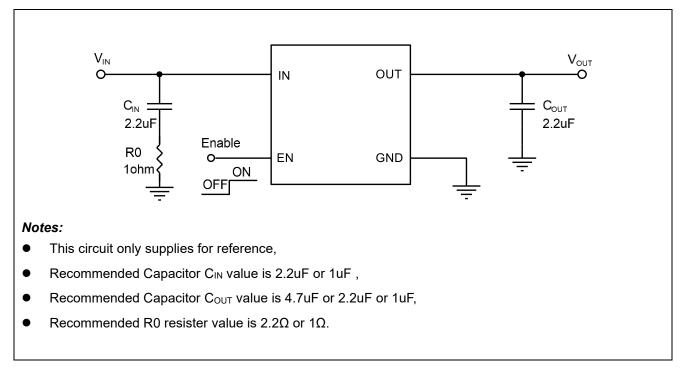
Timing Diagram

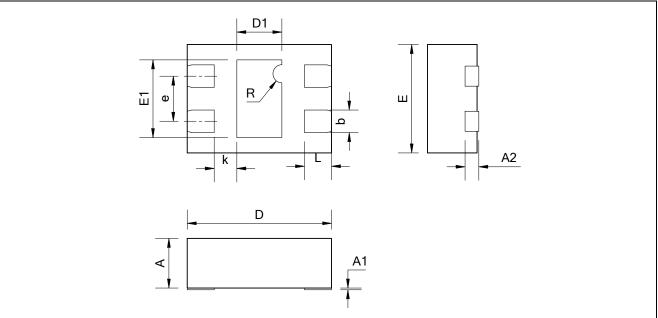

Typical Characteristics


Internally regulated TA = 25°C, unless otherwise noted

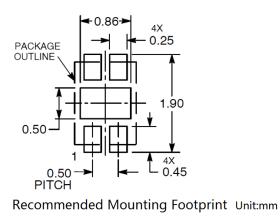


ET3158A


Typical Characteristics(Continued)



Application Circuits


Package Dimension

DFN4

Unit:mm

Symbol	Min	Тур	Мах	Symbol	Min	Тур	Мах
A	0.5	0.55	0.6	D1	0.45	0.5	0.55
A1	0	0.02	0.05	E1	0.81	0.86	0.91
A2	0.152REF			L	0.25	0.3	0.35
D	1.5	1.6	1.7	b	0.2	0.25	0.3
E	1.10	1.20	1.30	е	0.500BSC		
R	0.05	0.1	0.15	k	0.15	0.25	0.35

Revision History and Checking Table

Version	Date	Revision Item	Modifier	Function & Spec Checking	Package & Tape Checking
1.2	2023-3-29	Update Typeset	Shi Bo	Liuxm	Zhu Jun Li