Ultra-Low On-Resistance Bidirectional Battery Switch

General Description

The ET3153 bidirectional battery switch features reverse blocking capability to isolate the battery from the system. The internal switch features ultra-low $6m\Omega$ (Typ) on-resistance and operates from a 2.3V to 5.5V input voltage range, making this device ideal as a battery-disconnect switch for high-capacity battery applications. The slew-rate controlled switch is also ideal for a large load capacitor as well as high-current load switching applications.

The device is available in an ultra-small WLCSP12 package. The tiny, low-profile package is suitable for space-limited portable device applications.

The device operates over the -40 °C to +85 °C extended temperature range.

Features

- Efficient System Battery Switch
- Wide Input Voltage Range from 2.3V to 5.5V
- Low Quiescent Current Lower than 1uA
- Typical $R_{DS(ON)}$ is $6m\Omega$ Typical at 3.6V
- Integrated Pull-down and Logic Buffer Circuits
- Part No. and Package

Part No.	Package		
ET3153	WLCSP12 (1.4mm ×1.8mm,0.4mm pitch)		

Application

- Tablet PC Battery Switches
- Smart phone Battery Switches
- Battery Isolators

Pin Configuration

Pin Function

Pin No.	Pin Name	Description
A1, A3, B1,B3, C3	PWRB	Power I/O
A2, B2, B4,C2, C4	PWRA	Power I/O
Δ.4	ĒN	Active-Low Enable Input.
A4		Drive \overline{EN} low level to turn on the switch.
C1	GND	Ground

Block Diagram

Functional Description

The ET3153 is a bidirectional switch with ultra-low $6m\Omega$ (Typ) on-resistance and reverse-current blocking capability. The device has low quiescent current and operates from a 2.3V to 5.5V input voltage range, making this device ideal as a battery-disconnect switch for high-capacity battery applications. The slew-rate controlled switch is also ideal for a large load capacitor as well as high-current load switching applications.

Reverse-Current Blocking

The bidirectional FET switch prevents current flowing from either power input to the other when the switch is disabled.

EN Input

The switch position is controlled by an \overline{EN} active-low logic input. The switch is on when \overline{EN} is logic-low and off when \overline{EN} is logic-high. \overline{EN} is internally pulled down to ground by RPD.

Absolute Maximum Ratings

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

	Value	Unit		
PWI	-0.3 to 7.0	V		
Enable(EN) Input Voltage		-0.3 to 7.0	v	
Maximum Continuous Switch Current (I _{MAX}) ⁽³⁾		± 6.0	А	
Maximum Repetitive	± 12.0			
ESD/Electrostatic Discharge Capability	Human Body Model, JESD22-A114	± 4.0		
	Charged Device Model, JESD22-C101	± 2.0	KV	
	ESD Withstand Voltage IEC61000-4-2	± 8.0(Contact)		
Junction Temperature (TJ)		-40 to 150	°C	
Thermal Resistance (θ _{JA}) ⁽¹⁾		73	°C/W	
Power Dissipation (P _D) ⁽²⁾		1100	mW	

Note1. Device mounted with all leads and power pad soldered or welded to PC board.

Note2. Derate 14mW/°C above +70°C

Note3. T_A = 25 °C.

Electrical Characteristics

 V_{PWRA} , V_{PWRB} = 2.3V to 5.5V; T_A = -40°C to +85°C , unless otherwise noted. Typical values are at V_{PWRA} , V_{PWRB} = 4.2V; C_{PWRA} , C_{PWRB} = 0.1µF; T_A = +25°C ⁽⁴⁾

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
Vpwra			23		55	V
V _{PWRB}	Operating voltage		2.0		5.5	v
I _{PWRA}	Quiescent Current	$\sqrt{-1} = 0.4 \sqrt{-1}$ and			1	
IPWRB		V EN -0.4V, 10 10ad			1	μΛ
	Transient Supply Current	\overline{EN} from high to low or low to high		30		μA
		$V_{\overline{EN}} = 5.5V,$				
I _{SHDN}	Shutdown Current	(V _{PWRA} = 5.5V, V _{PWRB} = open)			1	μA
		or (V _{PWRB} = 5.5V, V _{PWRA} = open)				
Ron	On-Resistance Between I_{LOAD} =100mA,T _A =+25°CPWRA and PWRB V_{PWRA} = 3.3V, V_{PWRB} = 3.3V			6	10	
				0	10	mΩ
VIH	EN Input Logic-High Voltage ⁽⁵⁾		1.6			V
VIL	EN Input Logic-Low Voltage ⁽⁵⁾				0.4	V
Rpd	EN Internal Pull-down Resistor			500	700	kΩ
ton	Turn-On Time	Time from EN high-to-low signal				
		to $V_{PWRB/A}$ = 90% of $V_{PWRA/B}$,		3		ms
		R _{LOAD} =100Ω				
toff		Time from EN low-to-high signal				
	Turn-Off Time	to $V_{PWRB/A}$ = 10% of $V_{PWRA/B}$,		3		ms
		R _{LOAD} = 100Ω				

Note4. All devices are 100% production tested at TA = +25°C. Specifications over the operating temperature range are guaranteed by design.

Note5. EN rising effective typical voltage is 1.2V, falling effective typical voltage is 0.7V.

Typical Operating Characteristics

Application Circuits

*: This electric circuit only supplies for reference.

Package Dimension

Revision History and Checking Table

Version	Date	Revision Item	Modifier	Function & Spec	Package & Tape	
				Спескіпд	Checking	
1.0	2013-5-27	Original version	Wu Xiang Jun	Wu Xiang Jun	Zhu Jun Li	
1.1	2016-05-19	Detail the EN VIH/VIL	Wang Fang	Wang Fang	Zhu Jun Li	
1.2	2016-07-19	Add ' Maximum Repetitive		Wu Xiang Jun	Zhu Jun Li	
		Pulsed Current (1ms,20%	Wu Yiong Jun			
		Duty Cycle):12A' on page 3	wu Alang Jun			
		Modify application circuits				
1.3	2018-01-05	Change the AMR value from	Wu Yiong Jun	Wu Xiang Jun	Jenna Liu	
		6.5V to 7V				
1.4	2020-03-13	Document formalize	Shib	Shib	Liujy	
1.5	2022-10-29	Update Typeset	Shib	Shib	Liujy	