6A Load Switch with TRCB and Voltage Detector

General Description

The ET3152 advanced load switches target applications requiring a highly integrated solution it disconnects loads powered from DC power rail (≤ 6.0 V) with stringent off-state current targets and high load capacitances (up to 200uF). Each switch consists of slew-rate controlled low-impedance MOSFET Switch and other integrated analog features. The slew-rate controlled turn-on characteristic prevents inrush-current and the resulting excessive voltage droop on power rails.

The ET3152 has True Reverse Current Blocking(TRCB) function unwanted reverse current from OUT to IN during ON/OFF state. These devices have very low off-state current drain (<1uA max) which facilitate compliance in very low stand-by power applications. Switch control is managed by a logic input (Active HIGH) capable of interfacing directly with low voltage control signal with no external pull-down resistor required.

The ET3152 built in a high-precision voltage detectors. The detection voltage is typical 2.9V.

The device is in advanced full-Green compliant WLCSP12(0.4mm pitch) package.

Features

Load Switch

- 2.2V to 6.0V Input Voltage Operating Range
- Ultra Low R_{DS(on)}:
 - -- 5mΩ (Typ) at V_{IN}=4.5V
 - -- 6mΩ (Typ) at V_{IN}=3.3V
 - -- 10m Ω (Typ) at V_{IN}=3.0V
- Maximum Continuous Switch Current up to 6A
- Slew Rate/Inrush Control with t_R is 2.7ms Typical
- Low<1µA Off Switch Current
- True Reverse Current Blocking (TRCB)
- ESD Protected: Above 8kV (contact) IEC,4kV HBM, 1.5kV CDM

Voltage Detector

- Supply Current is Typical 1.0µA @V_{DI}=2.0V
- Operating Voltage Range from 1.2V to 5.5V (Ta=25°C)
- Detector Threshold Temperature Coefficient is ±100ppm/°C Typical

Applications

- Smartphones, Tablet PC
- Portable Media Devices, Laptop & MID
- Industrial Handheld and Enterprise Equipment

Pin Configuration

Pin Function

Pin Number	Pin Name	Function
A1, B1, B2, C1	OUT	Load Switch Output
A3, B3, C2, C3	IN	Load Switch Input
A2	LCE	Load Switch Control Enable
D1	GND	Ground
D2	VDO	Voltage Detector Output
D3	VDI	Voltage Detector Input

ET3152

Block Diagram

Functional Description

The ET3152 is low- R_{ON} load switches with controlled turn-on and TRCB (True Reverse Current Blocking). The core of each device is a $6m\Omega$ P-channel MOSFET and controller capable of functioning over a wide input operating range of 2.2 to 6.0V. The LCE pin, an active HIGH input, controls the state of the switch. TRCB functionality blocks unwanted reverse current during ON and OFF when higher OUT than IN applied.

The ET3152 also built in a high-precision voltage detector. The detection voltage is 2.9V.

Input Capacitor

To limit the voltage drop on the input supply caused by transient inrush current when the switch turns on into a discharged load capacitor or short-circuit, a capacitor must be placed between the IN and GND pins. A 10μ F ceramic capacitor, C_{IN} and a 2.20hm resistor placed close to the pins is usually sufficient. Higher-value C_{IN} can be used to reduce the voltage drop in higher-current applications.

Output Capacitor

A 4.7 μ F capacitor, C_{OUT}, should be placed between the OUT and GND pins. This capacitor prevents parasitic board inductance from forcing OUT below GND when the switch is on. CIN greater than C_{OUT} is highly recommended. C_{OUT} greater than C_{IN} can cause V_{OUT} to exceed V_{IN} when the system supply is removed. This could result in current flow through the body diode from OUT to IN.

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Par	Min	Мах	Unit	
V _{IN} (*)	IN	-2.0	7.0	V	
VLCE	LCE	to GND	-0.3	7.0	V
Vout	OU ⁻	Γ to GND	-0.3	7.0	V
V _{VDI}	VD	to GND	-2.0	7.0	V
Vvdo	VDC	D to GND	-0.3	V _{VDI} +0.3	V
Isw1	Maximum Conti		6	А	
lsw2	Maximum Repetitive Pulse		12	А	
I _{SW3}	Maximum Non-Repeti		15	А	
PD	Power Dissi		1.6	W	
Tstg	Storage June	-65	+150	°C	
TJ	Operating Junction	on Temperature Range	-40	+150	°C
θ _{JA}	Thermal Resistance	Thermal Resistance, Junction-to-Ambient			°C/W
		Human Body Model,	140		
ESD	Electrostatic Discharge	JESD22-A114	± 4.0		КV
	Capability	Charged Device Model,	± 1.5	+ 1 5	
		JESD22-C101	± 1.0		

*Note**: ET3152 can pass the 10V test (Instant Contact): can support up to 100mS 10V pulse.

Recommended Operating Conditions

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. ETEK does not recommend exceeding them or designing to Absolute Maximum Ratings.

Symbol	Parameters	Min	Max	Unit
VIN	Input Voltage	2.2	6.0	V
V _{VDI}	Voltage detector input voltage	1.2	5.5	V
T _A	Ambient Operating Temperature	-40	+85	°C

Electrical Characteristics

Load switch

Unless otherwise noted, typical values are at V_IN=4.5V and T_A=25°C.

Symbol	Parameters	Test Conditions	Min	Тур	Мах	Unit	
Basic Operation	ation						
VIN	Input Voltage		2.2		6.0	V	
IQ(OFF)	Off Supply Current	V _{LCE} =GND, V _{OUT} =Open			1	μA	
Isd	Shutdown Current	V _{LCE} =GND, V _{OUT} =GND		0.2	1.2	μA	
lq	Quiescent Current	Ι _{ουτ} =0mA			11	μA	
		VIN=5.5V, IOUT=1A		4			
Р	On Desistance	VIN=4.5V, IOUT=1A		5			
Ron	On-Resistance	V _{IN} =3.3V, I _{OUT} =1A, T _A =25°C		6	10	mΩ	
		V _{IN} =3.0V, I _{OUT} =1A,		10			
Vih	LCE Input Logic High Voltage	V _{IN} =5.0V	2.3			V	
VIL	LCE Input Logic Low Voltage	V _{IN} =5.0V			2.0	V	
ILCE	LCE Input Leakage	V _{LCE} = V _{IN} or GND			1.0	μA	
Р	Pull-Down	V _{IN} =2.2V to 6.0V,	6.38	7.65	8.86	MO	
R_{LCE_PD}	Resistance at LCE pin	T _A = -40 to+ 85°C				MΩ	
True Revers	se Current Blocking						
V_{T_RCB}	RCB Protection Trip Point	V _{OUT} - V _{IN}		15		mV	
Vr_rcb	RCB Protection Release Trip Point	Vin - Vout		45		mV	
	RCB Hysteresis			60		mV	
Isd_out	Vout Shutdown Current	V _{LCE} =0V, V _{OUT} =5.0V, V _{IN} =Short to GND			2	μA	
T _{RCB_LCE}	RCB Response Time when Device ON	V _{OUT} - V _{IN} =100mV V _{LCE} =High		4.0		μs	
TRCB_OFF	RCB Response Time Device OFF	RCB Response Time VOUT - VIN = 100mV		2.5		μs	

Electrical Characteristics(Continued)

Load switch

Symbol	Parameters Test Conditions		Min	Тур	Max	Unit			
Dynamic Ch	Dynamic Characteristics: See Definitions Below								
t DON	Turn-On Delay ^(1,2)			1.1		ms			
t _R	Vout Rise Time ^(1.2)	V _{IN} =4.5V, R _L =50Ω, C _L =10µF, T _A =25°C		2.0		ms			
t _{LCE}	Turn-On Time ^(1,3)	TA-23 C		3.1		ms			
t _{DON}	Turn-On Delay ^(1,2)	V _{IN} =3V, R∟=50Ω, C∟=10μF, T _A =25°C		1.3		ms			
t _R	V _{OUT} Rise Time ^(1,2)			1.7		ms			
t _{LCE}	Turn-On Time ^(1,3)			3.0		ms			
tdoff	Turn-Off Delay ^(1,2)			0.1		ms			
tF	Vout Fall Time ^(1,2)	V _{IN} =4.5V, R _L =50Ω, C _L =10µF, T _A =25°C		1.4		ms			
toff	Turn-Off Time ^(1,4)	TA-23 C		1.5		ms			
t DOFF	Turn-Off Delay ^(1,2)	V _{IN} =3V, R _L =50Ω, C _L =10μF,		0.1		ms			
t⊧	Vout Fall Time ^(1,2)			1.4		ms			
toff	Turn-Off Time ^(1,4)	T _A =25°C		1.5		ms			

Voltage Detector

Unless otherwise noted, V_{VDI} =3.6V and T_A=25°C.

Symbol	Parameters	Test Conditions		Min	Тур	Max	Unit
Vdet ⁽⁵⁾	Detector Threshold			2.8	2.9	3	V
V _{HYS} ⁽¹⁾⁽⁵⁾	Detector Threshold			100	450	200	mV
VHYS	Hysteresis			100	150	200	mv
			V _{VDI} = 2.0V		1.0		
Ivdi	Supply Current	V _{VDI} = 2.60V				3.3	uA
			V _{VDI} = 3.50V		3.4		
V _{VDI}	Operating Voltage			1.2		5.5	V
han	Output Current	Nch	V _{DS} = 0.5V, V _{VDI} = 1.5V	1.0	2.0		mA
Ivdo	Output Current	Pch	V_{DS} = -2.1V, V_{VDI} = 5.5V	1.0	2.5		ША
T _{PLH}	Output Delay Time ⁽⁶⁾					100	uS
$\Delta V_{DET} / \Delta T_A$	Detector Threshold				1100		ppm/°
	Temperature Coefficient	−40°C < T _A < 85°C		±100		С	

Notes:

1. This parameter is guaranteed by design and characterization.

2. $t_{DON}/t_{DOFF}/t_R/t_F$ are defined in Figure 1.

3. $t_{ON} = t_R + t_{DON}$

4. $t_{OFF} = t_F + t_{DOFF}$

5. V_{DET} is defined as an actual detector threshold in Figure 2.

- 6. The time interval between the rising edge of V_{VDI} input pulse from 1.3V to 3.9V and output voltage level becoming to 2.4V.
- 7. T_{PLH} is defined in Figure 3.

Timing Diagram (Load Switch)

Application Circuit

*: This electric circuit only supplies for reference.

UBM Structure

Package Dimension

WLCSP12

Revision History and Checking Table

Version	Date	Revision Item	Modifier	Function & Spec Checking	Package & Tape Checking
1.0	2014-3-27	Original version	Wu Xiang Jun	Wu Xiang Jun	Zhu Jun Li
1.1	2018-1-5	1.Change the AMR value from 6.5V to 7V 2. Add "ET3152 can pass the 10V test (Instant Contact) : can support up to 100ms 10V pulse"	Wu Xiang Jun	Wu Xiang Jun	Jenna Liu
1.2	2020-03-12	Document check and formalize	Shib	Shib	Liujy
1.3	2022-11-12	Update Typesetting	Shib	Shib	Liujy