3A Load Switch with True Reverse Current Blocking

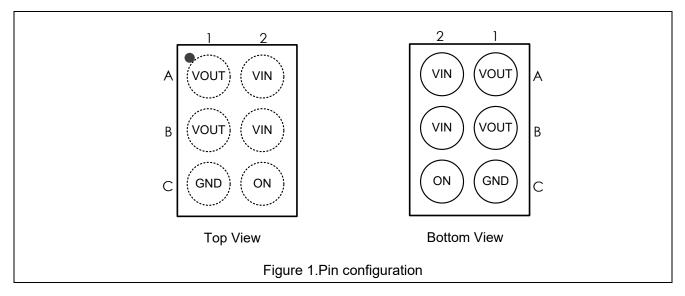
General Description

The ET3148A advanced load management switches target applications requiring a highly integrated solution it disconnects loads powered from DC Power Rail (<6V) with stringent off-state current targets and high load capacitances (up to 200uF). Each switch consists of slew-rate controlled low-impedance MOSFET Switch ($23m\Omega$ Typ) and other integrated analog features. The slew-rate controlled turn-on characteristic prevents inrush-current and the resulting excessive voltage droop on power rails.

The ET3148A has True Reverse Current Blocking (TRCB) function blocking unwanted reverse current from V_{OUT} to V_{IN} during ON/OFF state. These devices have exceptionally low off-state current drain (<1uA max) which facilitate compliance in very low stand-by power applications. The input voltage range operates from 1.5V to 6.0V DC to fulfill a wide range of applications in consumer, optical, medical, storage, portable, and industrial device power management. Switch control is managed by a logic input (Active HIGH) capable of interfacing directly with low voltage control signal/GPIO with no external pull-down resistor required.

The device is packaged in advanced full-Green compliant WLCSP6 1.56mm×1.06mm .

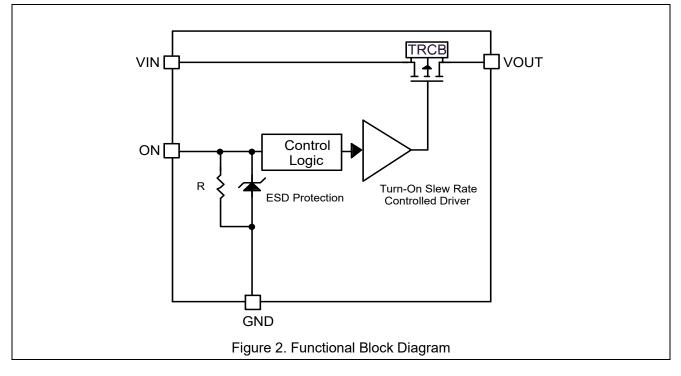
Features


- 1.5V to 6.0V Input Voltage Operating Range
- Typical RDS(ON):
 - -- 21mΩ at V_{IN}=5.5V
 - -- 23m Ω at V_{IN}=4.5V
 - -- 30m Ω at V_IN=2.5V
- Slew Rate/Inrush Control with t_R: 2.7ms (Typ)
- 3A Maximum Continuous Current Capability
- Low<1uA Off Switch Current
- True Reverse Current Blocking (TRCB)
- ESD Protected: Above 8kV HBM, 1.5kV CDM
- Part No. and package

Part No.	Package	MSL	
ET3148A	WLCSP6 1.56mm×1.06mm,0.5mm pitch	Level 1	

Application

- Smartphones, Tablet PC
- HDD, Storage, and Solid State Memory Devices
- Portable Media Devices, Laptop & MID
- Industrial Handheld and Enterprise Equipment


Pin Configuration

Pin Function

Pin Number	Name	Function		
A1, B1	VOUT	Switch Output Pin		
A2, B2	VIN	Switch Input Pin: Input Power to the Switch		
C1	GND	Ground Pin		
C2 ON		Switch ON/OFF Control,		
02	ON	High Set Switch On , Low Set Switch Off .		

Block Diagram

Functional Description

The ET3148A is low- R_{ON} load switches with controlled turn-on and TRCB (True Reverse Current Blocking). The device is a 23m Ω P-channel MOSFET and controller capable of functioning over a wide input operating range of 1.5 to 6.0V. The ON pin, an active HIGH GIOP/CMOS input, controls the state of the switch. TRCB functionality blocks unwanted reverse current during ON and OFF when higher V_{OUT} than V_{IN} applied.

Input Capacitor

To limit the voltage drop on the input supply caused by transient inrush current when the switch turns on into a discharged load capacitor or short-circuit, a capacitor must be placed between the V_{IN} and GND pins. A 1µF ceramic capacitor, C_{IN} , placed close to the pins is usually sufficient. Higher-value C_{IN} can be used to reduce the voltage drop in higher-current applications.

Output Capacitor

A 0.1μ F capacitor, C_{OUT}, should be placed between the V_{OUT} and GND pins. This capacitor prevents parasitic board inductance from forcing V_{OUT} below GND when the switch is on. C_{IN} greater than C_{OUT} is highly recommended. C_{OUT} greater than C_{IN} can cause V_{OUT} to exceed V_{IN} when the system supply is removed. This could result in current flow through the body diode from V_{OUT} to V_{IN}.

Board Layout

For better performance, all traces should be as short as possible. To be most effective, the input and output capacitors should be placed close to the device. Using wide traces or large copper planes for all pins (V_{IN} , V_{OUT} , ON, and GND) helps minimize the parasitic electrical effects along with minimizing the case ambient thermal impedance.

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Parameter		Max	Unit
V _{IN} ⁽¹⁾	V_{IN} to GND, $ V_{IN} - V_{OUT} < 7V$	-2	7	V
Von	V_{ON} to GND, Input resistance is greater than $1k\Omega$	-2	7	V
V _{OUT}	V _{OUT} to GND, V _{IN} - V _{OUT} < 7V	-2	7	V
Isw1	Maximum Continuous Switch Current		3.5	А
lsw2	Maximum Repetitive Pulsed Current (1ms,20% Duty Cycle)		6	А
lsw3	Maximum Repetitive Pulsed Current (100µs,20% Duty Cycle)		15	А
PD	Power Dissipation at T _A =25°C		1.2	W
Tstg	Storage Junction Temperature	-65	+150	°C
TJ	Operating Junction Temperature	-40	+150	°C
θ_{JA}	Thermal Resistance, Junction-to-Ambient		85	°C/W
ESD	Human Body Model, JESD22-A114	8		- kV
EOD	Charged Device Model, JESD22-C101	1.5		ĸv

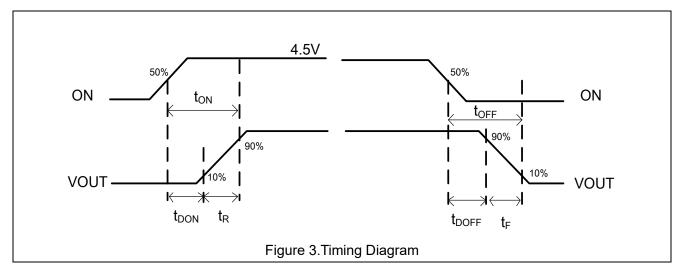
Note1: ET3148A can pass the 10V test (Instant Contact): can support up to 100mS 10V pulse.

Recommended Operating Conditions

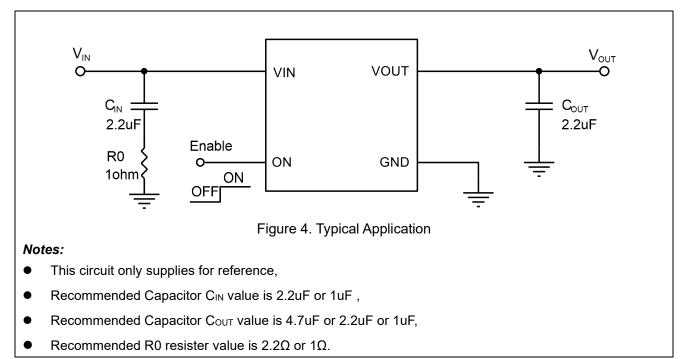
Symbol	Parameter	Min	Max	Unit
VIN	Input Voltage	1.5	6	V
T _A	Ambient Operating Temperature	-40	+85	°C

Electrical Characteristics

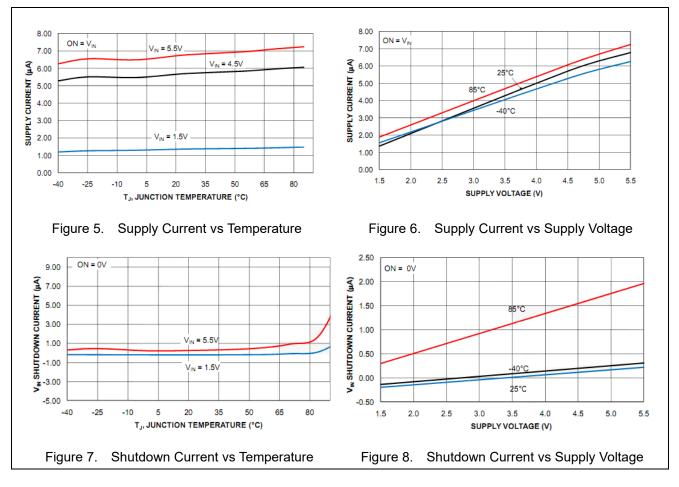
Unless otherwise noted, V_{IN} =1.5 to 6.0V, T_A =-40 to +85°C; typical values are at V_{IN} =4.5V and T_A =25°C.

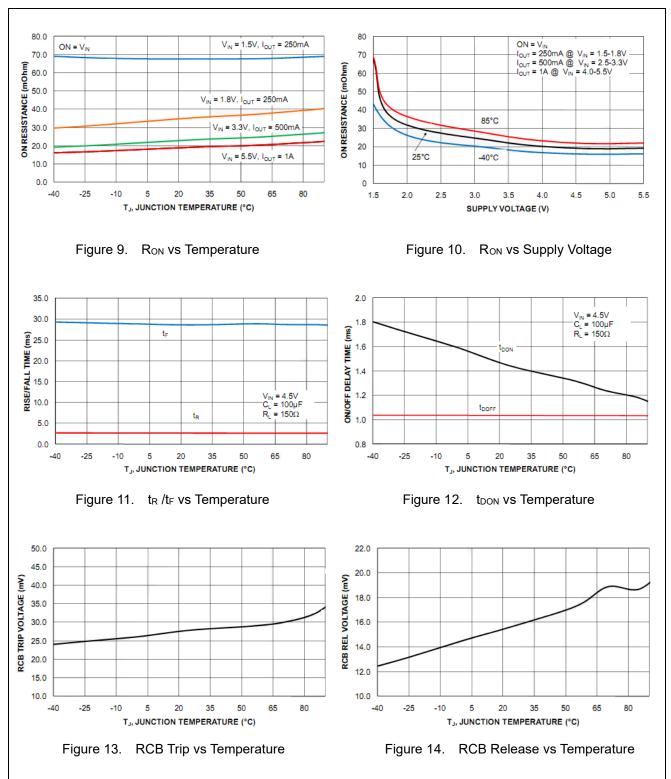

Basic Operatio V _{IN} I _{Q(OFF)} I _{SD} I _Q	n Input Voltage Off Supply Current Shutdown Current Quiescent Current	Von=GND, Vout=Open	1.5		C		
Iq(OFF) Isd	Off Supply Current Shutdown Current	Von=GND, Vout=Open	1.5		c		
Isd	Shutdown Current	Von=GND, Vout=Open			6	V	
					1	μA	
lq	Quiescent Current	Von=GND, Vout=GND		0.2	1.2	μA	
	Quiocoont ourront	I _{OUT} =0mA			11	μA	
		V _{IN} =5.5V, I _{OUT} =3A		22		-	
		VIN=5.5V, IOUT=2A		21.5			
		V _{IN} =5.5V, I _{OUT} =1A, T _A =25°C		21	28		
		V _{IN} =4.5V, I _{OUT} =3A		24			
Ron	On-Resistance ⁽²⁾	V _{IN} =4.5V, I _{OUT} =2A		23.5		-	
		V _{IN} =4.5V, I _{OUT} =1A, T _A =25°C		23	35	mΩ	
		V _{IN} =3.3V, I _{OUT} =500mA		26			
		VIN=2.5V, IOUT=500mA		30			
Vін	ON Input Logic High Voltage	V_{IN} =1.5V to 5.5V	1.15			V	
	ON Input Logic Low	V _{IN} =1.8V to 6.0V			0.65	V	
VIL	Voltage	V _{IN} =1.5V to 1.8V			0.60	V	
Ion	ON Input Leakage	V _{ON} = V _{IN} or GND			1	μA	
_	Pull-Down	V _{IN} =1.5V to 6.0V,	0.00		8.86	MΩ	
Ron_pd	Resistance at ON pin	T _A = -40 to+ 85°C	6.38	38 7.65			
True Reverse (Current Blocking						
V _{T_RCB}	RCB Protection Trip Point	V _{OUT} - V _{IN}		45		mV	
Vr_rcb	RCB Protection Release Trip Point	Vin - Vout		25		mV	
	RCB Hysteresis			70		mV	
	V _{OUT} Shutdown	Von=0V, Vout=6.0V,			<u> </u>		
ISD_OUT	Current	V_{IN} =Short to GND			2	μA	
т –	RCB Response Time	V _{OUT} - V _{IN} =100mV				μs	
T _{RCB_ON}	when Device ON	V _{ON} =High		4			
TRCB_OFF	RCB Response Time Device OFF	V _{OUT} - V _{IN} =100mV V _{ON} =Low		2.5		μs	

Symbol	Parameters	Test Conditions		Тур	Мах	Unit		
Dynamic Char	Dynamic Characteristics: See Definitions Below							
t DON	Turn-On Delay ^(2,3)			1.7		ms		
t _R	Vout Rise Time ^(2,3)	V _{IN} =4.5V, R∟=5Ω, C∟=100µF, T₄=25°C		2.7		ms		
t _{on}	Turn-On Time ^(2,4)	TA-23 C		4.4		ms		
t DON	Turn-On Delay ^(2,3)			1.7		ms		
t _R	Vout Rise Time ^(2,3)	V _{IN} =4.5V, RL=150Ω, CL=100µF, T₄=25°C		1.5		ms		
ton	Turn-On Time ^(2,4)	TA-23 C		3.2		ms		
t DOFF	Turn-Off Delay ^(2,4)			1.8		ms		
t⊧	Vout Fall Time ^(2,3)	V _{IN} =4.5V, RL=150Ω, CL=100µF, T _A =25°C		34		ms		
toff	Turn-Off Time ^(2,5)	TA-25 C		35		ms		

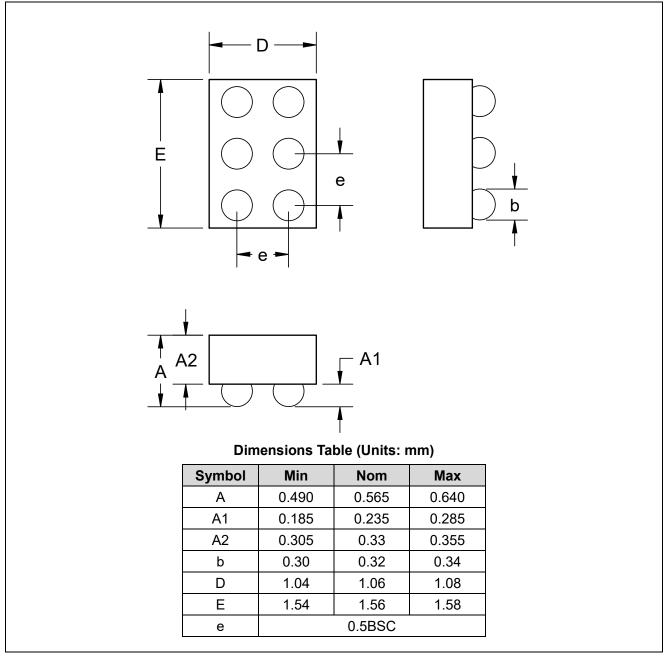

Notes:

- 2. This parameter is guaranteed by design and characterization; not production tested.
- 3. t_{DON} / t_{DOFF} / t_{R} / t_{F} are defined in Figure 3.
- 4. $t_{ON} = t_R + t_{DON}$
- 5. $t_{OFF} = t_F + t_{DOFF}$

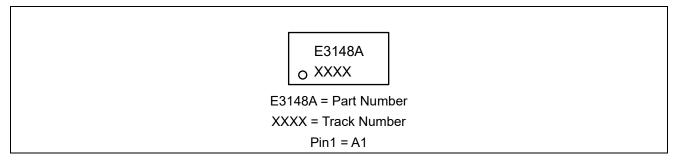

Timing Diagram


Application Circuits

Typical Characteristics



Typical Characteristics(Continued)



Package Dimension

WLCSP6

Marking

Revision History and Checking Table

Version	Date	Revision Item	Modifier	Function & Spec Checking	Package & Tape Checking
1.1	2022-10-29	Update Typeset	Shi Bo	Liuxm	Zhu Jun Li