Slew Rate Controlled Load Switch

General Description

The ET3137 advanced load management switches target applications requiring a highly integrated solution it disconnects loads powered from DC Power Rail (< 5.5V) with stringent off-state current targets. Each switch consists of slew-rate controlled low-impedance MOSFET Switch ($40m\Omega$ Typ) and other integrated analog features. The slew-rate controlled turn-on characteristic prevents inrush-current and the resulting excessive voltage droop on power rails.

These devices have exceptionally low off-state current drain (< 1µA max) which facilitate compliance in very low stand-by power applications. The input voltage range operates from 1.2V to 5.5V DC to fulfill a wide range of applications in consumer, optical, medical, storage, portable, and industrial device power management. Switch control is managed by a logic input (Active LOW) capable of interfacing directly with low voltage control signal/GPIO with no external pull-down resistor required.

Features

- 1.2V to 5.5V Input Voltage Operating Range
- Typical RDS(ON):
 - -- 40mΩ at V_{IN}=5.5V
 - -- 50m Ω at V_IN=3.3V
 - -- 90m Ω at V_{IN}=1.8V
 - -- 180mΩ at V_{IN}=1.2V
- Slew Rate/Inrush Control with t_R: 60us (Typ)
- 2.2A Maximum Continuous Current Capability
- Low < 1µA Off Switch Current
- Logic CMOS IO meets JESD76 standard
- ESD Protected: Above 8kV HBM, 2kV CDM
- Part No. and Package

Part No.	Package	MSL
ET3137	WLCSP4 (0.76mm × 0.76mm)	Level 1

Application

- Smartphones, Tablet PC
- HDD, Storage, and Solid State Memory Devices
- SLR Digital Cameras
- GPS and Navigation Equipment
- Industrial Handheld and Enterprise Equipment

Pin Configuration

Pin Function

Pin	Name	Description
A1	VOUT	Switch Output
A2	VIN	Supply Input: Input to the Power Switch
B1	GND	Ground
B2	ON	ON/OFF Control, Active Low Compatible

Block Diagram

Functional Description

The ET3137 is low-R_{ON} P-channel load switches with controlled turn-on. The core of each device is a $40m\Omega$ P-channel MOSFET and controller capable of functioning over a wide input operating range of 1.2~5.5V. The ON pin, an active Low GIOP input, controls the state of the switch.

Input Capacitor

To limit the voltage drop on the input supply caused by transient inrush current when the switch turns on into a discharged load capacitor or short-circuit, a capacitor must be placed between the VIN and GND pins. A 1μ F ceramic capacitor, C_{IN} , placed close to the pins is usually sufficient. Higher-value C_{IN} can be used to reduce the voltage drop in higher-current applications.

Output Capacitor

A 0.1μ F capacitor, C_{OUT}, should be placed between the VOUT and GND pins. This capacitor prevents parasitic board inductance from forcing V_{OUT} below GND when the switch is on. C_{IN} greater than C_{OUT} is highly recommended. C_{OUT} greater than C_{IN} can cause V_{OUT} to exceed V_{IN} when the system supply is removed. This could result in current flow through the body diode from V_{OUT} to V_{IN}.

Board Layout

For best performance, all traces should be as short as possible. To be most effective, the input and output capacitors should be placed close to the device to minimize the effect that parasitic trace inductance may have on normal and short-circuit operation. Using wide traces or large copper planes for all pins (V_{IN}, V_{OUT}, ON, and GND) helps minimize the parasitic electrical effects along with minimizing the case ambient thermal impedance.

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Parameters (Items)	Value	Unit
VIN	IN Voltage	-0.3 to 6.5	V
Von	ON Voltage	-0.3 to 6.5	V
Vout	Output Voltage	-0.3 to 6.5	V
IMAX	Maximum Continuous Switch Current	2.2	А
PD	Maximum Power Consumption	1	W
ESD	Human Body Model (JEDEC JS-001)	±8000	V
	Charged Device Model(JEDEC JS-002)	±2000	V
R _{θJA}	Junction-to-ambient thermal resistance 100		°C/W
TJ	Junction Temperature Range	-40 to 150	°C
Tstg	Storage Temperature	-65 to 150	°C

Recommended Operating Conditions

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. ETEK does not recommend exceeding them or designing to Absolute Maximum Ratings.

Symbol	Item	Rating	Unit
Vin	Input Voltage	1.2 to 5.5	V
TA	Operating Ambient Temperature	-40 to 85	°C
CIN	Effective Input Ceramic Capacitor Value	0.47 to 10	μF
Соит	Effective Output Ceramic Capacitor Value	0.047 to 1	μF

Electrical Characteristics

(Unless otherwise noted, V_{IN}=1.2 to 5.5V, T_A=-40 to +85°C; typical values are at V_{IN}=3.3V and T_A=25°C)

Symbol	Parameter	Test Conditions		Тур	Max	Unit	
Basic Operation							
V _{IN}	Input Voltage		1.2		5.5	V	
IQ_OFF	Off Supply Current	Von=Vin,Vout=Open		0.5	1.2	μA	
Isd	Shutdown Current	Von=Vin,Vout=GND		0.1	1.0	μA	
I _{Q_ON}	Quiescent Current	I _{OUT} = 0mA,V _{ON} =GND		0.1	1.0	μA	
		VIN =5.5V,IOUT=200mA,TA=25°C	30	40	50	mΩ	
Ron	On Resistance	VIN=3.3V,IOUT=200mA,TA=25°C	35	50	65		
	On-Resistance	V _{IN} =1.8V,I _{OUT} =200mA,T _A =25°C	70	90	110		
		V _{IN} =1.2V,I _{OUT} =200mA,T _A =25°C	140	180	220		
Vін	ON Input Logic	1/(1-1)(1-5)(1-5)(1-5)(1-5)(1-5)(1-5)(1-5)	10			V	
	High Voltage	VIN-1.2 V 10 5.5 V	1.0			v	
Vu	ON Input Logic	$V_{10}=1.2V_{10}5.5V_{10}$			0.55	V	
VIL	Low Voltage	VIN-1.2 V to 5.5 V			0.00	v	
RON DD	Pull-Down	T₄=25°C	55	70	10.5	MO	
I CON_PD	Resistance	14-20 0 0.0 1.0	10.5	10122			
Ion	On Input Leakage	Von=Vin or GND,Ta=25°C		0.5	1.0	μA	
Dynamic Cl	haracteristics: See Definitions	Below					
t _{DON}	Turn-On Delay ^(1,2)	1/10-3 31/ P. -100		40		μs	
t _R	Vout Rise Time ^(1,2)	$V_{\rm IN} = 3.3 V, R_{\rm L} = 10\Omega_2$		60		μs	
ton	Turn-On Time ^(1,3)	$C_{L}=0.1\mu$ F,1A=25 C		100		μs	
tDOFF	Turn-Off Delay ^(1,2)	V -2 2V D -100		5.5		μs	
tF	Vout Fall Time ^(1,2)	$V_{\rm IN} = 3.3 V, R_{\rm L} = 1002,$		1.3		μs	
toff	Turn-Off Time ^(1,4)	οι-υ. τμε, τα-29 ο		6.8		μs	

Notes:

1. This parameter is guaranteed by design and characterization; not production tested.

2. t_{DON}/t_{DOFF}/t_R/t_F are defined in Figure 3.

3. ton=t_R + t_{DON}

4. toff=tf + tdoff

ET3137

Timing Diagram

Application Circuits

*: This electric circuit only supplies for reference.

Recommend Capacitor Value: C_{IN} =1uF, C_{OUT} =0.1uF

Package Dimension

WLCSP4

Tape Information

Marking Information

Revision History and Checking Table

Version	Date	Revision Item	Modifier	Function &	Package &
1.0	2020-09-7	Initial Version	Luh	Zhujl	Zhujl
1.1	2022-11-23	Update Typeset	Shibo	Zhujl	Zhujl
1.2	2023-5-12	Update Block	Shibo	Zhujl	Zhujl