

High-Current Over-voltage Protectors

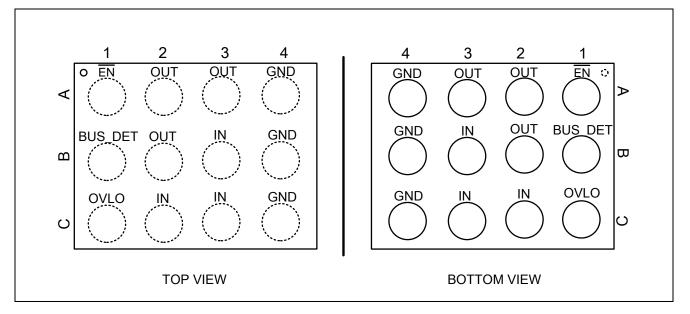
with Adjustable OVLO

General Description

ET9553L can disconnect the systems from its output pin(OUT) in case wrong input operating conditions are detected. The input voltage can be up to 28V. The internal overvoltage threshold (OVLO) is 5.95V, and also can be adjusted by external resistors. ET9553L has internal Thermal-Shutdown Protection function.

The device is packaged in advanced full-Green compliant Wafer Level Chip Scale Packaging (WLCSP12).

Features

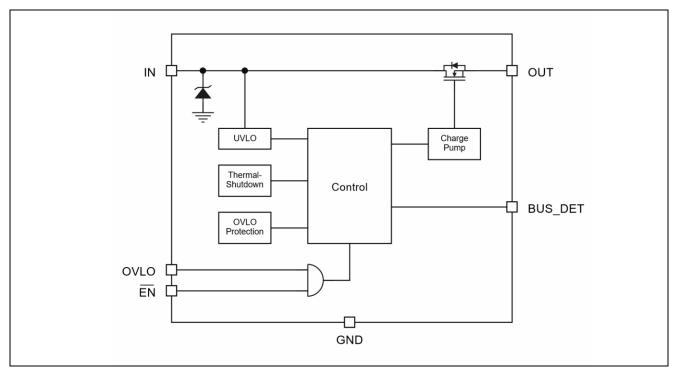

- 4.8A Continuous Current Capability
- Typical R_{ON}: 35mΩ N-Channel MOSFET
- V_{IN} Operating Range: 2.5V to 28V
- Overvoltage Lockout: V_{OVLO}=5.95V(TYP)
- Overvoltage-Protection Response Time: 50ns(TYP)
- OVLO Threshold Range: +4V to +24V
- Startup Debounce Time:21ms(TYP)
- Internal Thermal-Shutdown Protection
- Surge immunity to ±100V
- ESD Protected(HBM) to ±4KV
- Pat No. and Package

Part No.	Package		
ET9553L	WLCSP12 (1.58mm×1.18mm, ball pitch=0.4mm)		

Application

- Smartphones, Tablet PC
- HDD, Storage and Solid State Memory Devices
- Portable Media Devices, Laptop & MID
- SLR Digital Cameras
- GPS and Navigation Equipment
- Industrial Handheld and Enterprise Equipment

Pin Configuration



Pin Function

Pin	Name	Description			
A1	ĒN	Device Enable. Active low.			
A2,A3,B2	OUT	Output Voltage. Output of internal switch. Connect OUT pins together for prope operation.			
A4,B4,C4	GND	Ground. Connect GND pins together for proper operation.			
B1	BUS_DET	Regulation output of VBUS.			
B3,C2,C3	IN	Voltage Input. Connect IN pins together for proper operation.			
C1	OVLO	External OVLO Adjustment. Connect OVLO to GND when using the internal threshold. Connect a resistor-divider to OVLO to set a different OVLO threshold; this external resistor-divider is completely independent of the internal threshold.			

ET9553L

Block Diagram

Functional Description

The OVP switch with overvoltage protection feature a low $35m\Omega(TYP)$ on-resistance(R_{ON}) internal FET and protect low-voltage systems against voltage faults up to $28V_{DC}$. If \overline{EN} is in the logic low state, when the input voltage(V_{IN}) exceeds 5.95V, the internal FET is quickly turned off to prevent damage to the protected downstream components. If \overline{EN} is in the logic high state. The ET9553L will disables the protect low-voltage system.

Over-voltage Protection

When input (OVLO) is set lower than 0.2V. The overvoltage protection threshold is 5.95V.

The overvoltage protection threshold can also be adjusted by external resistors when input (OVLO) is set higher than 0.3V.

$$V_{IN_OVLO} = V_{OVLO_TH} \times (1 + R1/R2)$$

Note: V_{OVLO_TH} = 1.2V(TYP)

Thermal Shutdown

The internal FET turns off when the junction temperature exceeds +150°C (TYP). The device exits thermal shutdown after the junction temperature cools by 20°C (TYP).

USB OTG Operation

If $V_{IN}=0V$ and OUT is supplied by OTG voltage, the body diode of the OVP switch conducts current from OUT to IN and the voltage drop from OUT to IN is approximately 0.7V. When place \overline{EN} pin in the logic low state and $V_{IN}>V_{UVLO}$, internal charge pump begins to open the OVP switch after debounce time. After switch is fully on, current is supplied through switch channel and the voltage drop from OUT to IN is minimum. When place

 $\overline{\text{EN}}$ pin in the high state, the OVP switch will not turn ON unless $\overline{\text{EN}}$ pin is pulled LOW, the high forward voltage drop of 0.7V and consequent high power dissipation will remain. It is highly recommended to place $\overline{\text{EN}}$ pin in the logic low state in all OTG applications.

Please note in OTG mode, under no circumstance should any load, or any voltage be connected to BUS_DET.

Input Capacitor

To limit the voltage drop on the input supply caused by transient inrush current when the switch turns on into load capacitor or short-circuit, a capacitor 1µF or lager must be placed between the IN and GND pins.

Output Capacitor

A $1\mu F$ or lager capacitor should be placed between the OUT and GND pins.

Absolute Maximum Ratings

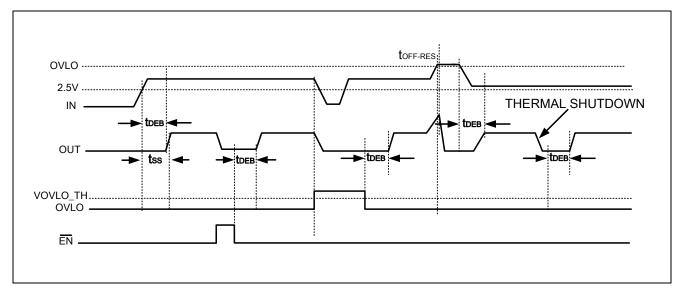
Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Parameters				Max	Unit
Vin	VIN to GND			-2.0 ⁽¹⁾	29	V
Vout		VOUT to GND		-0.3	28	V
Vovlo		OVLO to GND		-0.3	7	V
V/EN		EN to GND		-0.3	7	V
VBUS_DET		BUS_DET to GND		-0.3	10	V
Isw1	Maximur	n Continuous Current of s	witch IN-OUT		4.8	А
lsw2	Maximun	n Peak Current of switch IN	N-OUT(10ms)		8	А
PD	Power Dissipation at T_A = +25°C				1.4	W
Tstg	Storage Junction Temperature			-65	+150	°C
TA	Operating Temperature Range			-40	+85	°C
TSOLD	Soldering Temperature (reflow).				+260	°C
TJ	Max Junction Temperature				+150	°C
		IEC 61000-4-2	Air Discharge	15.0		
	Electrostatic Discharge Capability	System Level ESD	Contact Discharge	8.0		
ESD		Human Body Model,	All Pins	>4.0		kV
ESD		JEDEC JS-001-2012				
		Charged Device Model,	All Pins	>1.5		
		JESD22-C101		~1.5		
Surge		IEC 61000-4-5, VBUS		±100		V
Suige	Surge Protection		VD03	TIUU		v

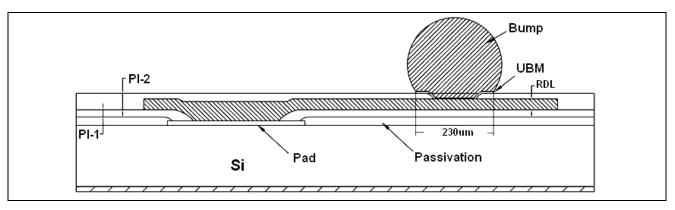
Note1: Pulsed, 50ms maximum non-repetitive.

Electrical Characteristics

Unless otherwise noted, V_{IN}=2.5V to 28V, T_A=-40°C to 85°C, Typical values are at V_{IN}=5V, I_{IN}≤2A, C_{IN}=1 μ F and T_A=25°C.

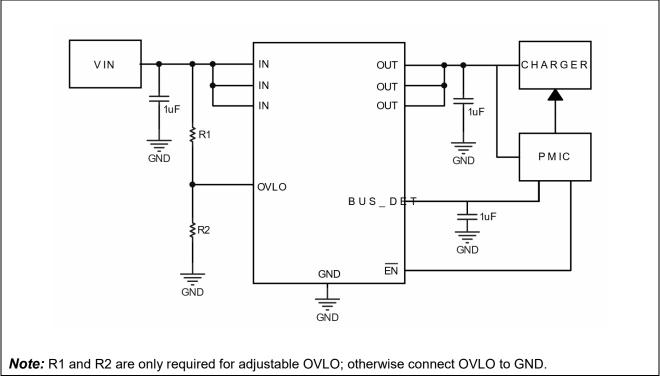

Symbol	Parameters	Conditions	Min	Тур	Max	Unit
TVS Charact	teristics			1	L	
V_{BR}	Reverse Breakdown Voltage	own I⊤=10mA, T _A =25°C		32	36	V
I _{PP}	Peak Pulse Current ⁽²⁾	t _p =8/20μs(+100V), T _A =25°C	25	32.5	44	Α
Vc	Clamping Voltage ⁽²⁾	IPP=32.5A, tp=8/20µs, TA=25°C	22	35	45	V
IPP_NEG	Reverse Peak Pulse Current ⁽²⁾	t _p =8/20µs(-100V surge) , T _A =25°C	-40	-48.5	-55	А
Vc_neg	Reverse Clamping Voltage ⁽²⁾	I _{PP} =-48.5A, t _p =8/20μs, T _A =25°C	-1	-3	-6	V
VF	Forward Voltage	I⊧=10mA, T _A =25°C	0.2	0.6	0.9	V
Basic Operat	tion					
V _{IN}	Input Voltage		2.5		28	V
lin	VIN Quiescent Current	V _{IN} =5V, V _{/EN} =0V, OUT floating	110	150	220	μA
I _{IN_OVLO}	OVLO Supply Current	V_{IN} =12V, $V_{/EN}$ =0V, OUT floating	150	190	250	μA
Ron	On-Resistance of Switch IN-OUT	$V_{IN}=5 \text{ OV } I_{OUT}=1 \text{ A } T_{A}=25^{\circ}\text{ C}$		35	53	mΩ
Vovlo	Overvoltage Protect of V _{IN}	V _{IN} Rising	5.90	5.95	5.99	V
	Overvoltage Protect hysteresis of V _{IN}		0.05	0.15	0.30	V
	Adjustable OVLO Threshold Range		4		24	V
Vovlo_th	OVLO Set Threshold		1.18	1.2	1.22	V
Vovlo_selc et	External OVLO Select Threshold		0.2		0.3	V
Vdet1	Regulation Output of BUS_DET	V _{IN} =5V, V _{/EN} =0V, I _{DET} =1mA and C _{BUS_DET} =1µF	4.8			V
Vdet2	Regulation Output of BUS_DET	V _{IN} =9V, V _{/EN} =0V, I _{DET} =10mA and C _{BUS_DET} =1µF	6 6.7		7.5	V
Vuvlo	Undervoltage	V _{IN} Rising	1.7	2.0	2.5	V
	Protect of VIN	V _{IN} Falling	1.5	1.8	2.3	V
Iovlo	OVLO Input Leakage Current	Vovlo=Vovlo_th	-100		100	nA
Vih	EN Input Logic High Voltage	V _{IN} =2.5V to 28V	1.4			V

Electrical Characteristics (Continued)


Symbol	Parameters	Conditions Min		Тур	Max	Unit
V _{IL}	EN Input Logic Low Voltage	V_{IN} =2.5V to 28V			0.3	V
TSHDN	Thermal Shutdown ⁽²⁾			150		°C
TSHDN_HYS	Thermal-Shutdown Hysteresis ⁽²⁾			20		°C
Dynamic Characteristics: see figure						
tdeв	Debounce Time	Time from V _{UVLO} <v<sub>IN< V_{OVLO} to V_{OUT}=10% of V_{IN}</v<sub>		21	32	ms
tss	Soft-Start time	Time from $V_{UVLO} < V_{IN} < V_{OVLO}$ to $V_{OUT} = 90\%$ of V_{IN}		23	35	ms
toff_res	Switch Turn-off Response Time ⁽²⁾	R _L =100Ω, No C _L , V _{IN} > V _{OVLO} to V _{OUT} stop rising		50	80	ns

Note2: This parameter is guaranteed by design and characterization.

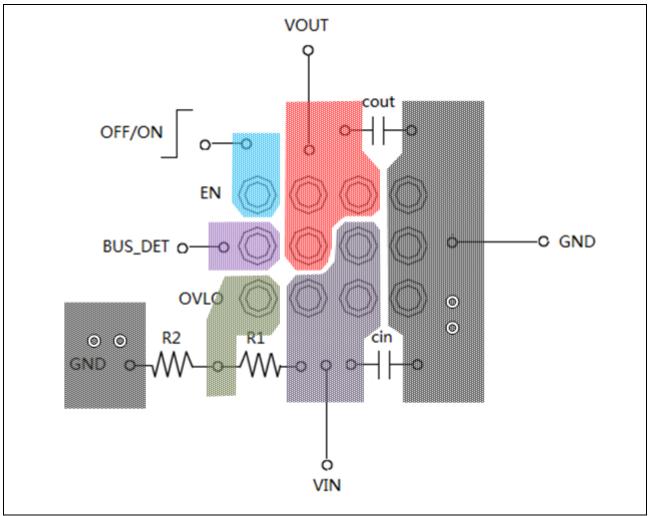
Timing Waveform



UBM Structure

ET9553L

Application Circuits



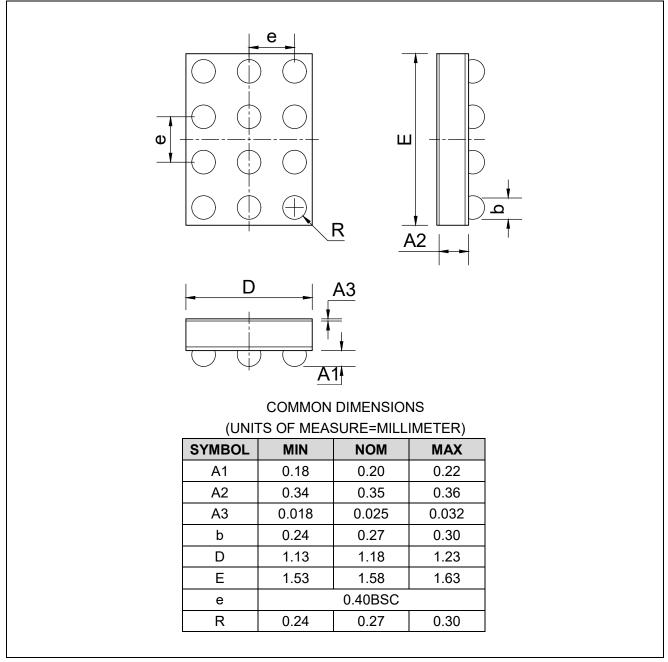
*: This application circuit is for reference only.

7

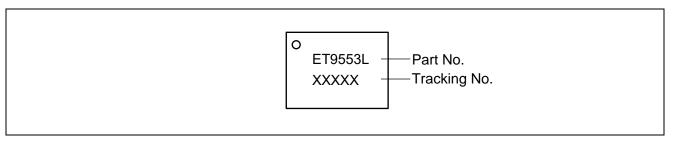
Board Layout

ET9553L can be routed in a single layer PCB. PCB traces to IN, OUT, \overline{EN} , BUS_DET, OVLO and GND can be routed in the fashion shown in below picture.

1. If R1 and R2 are used, route OVLO line on PCB as short as possible to reduce parasitic capacitance.


2. The decoupling capacitors per the recommended operating settings should be placed as close as possible to the ET9553L.

3. There should be a short path from the device ground pins to the system ground plane. This ensures best protection under ESD and surge transients.


4. If external TVS is used, IN pin routing passes through the TVS firstly, and then connect ET9553L.

Package Dimension

WLCSP12

Marking

Revision History and Checking Table

Version	Date	Revision Item	Modifier	Function & Spec Checking	Package & Tape Checking
0	2019-04-18	Preliminary Version	Wum	Wum	Liujy
1.0	2019-05-30	Original Version	Wum	Wum	Liujy
1.1	2019-06-10	Change IPP max to 44A	Wum	Wum	Liujy
1.2	2020-04-01	Update package dimension	Wum	Wum	Liujy
1.3	2021-10-14	Add Marking	Wum	Wum	Liujy
1.4	2023-1-12	Update Typeset	Shibo	Wum	Liujy
1.5	2024-03-11	Update PCB Layout	Caojc	Wum	Liujy