

High-Current Over-voltage Protectors

with Adjustable OVLO

General Description

ET9555M can disconnect the systems from its output pin (OUT) in case wrong input operating conditions are detected. The input voltage can be up to 28V. The internal over-voltage threshold (OVLO) is 12.1V, and also can be adjusted by external resistors. ET9555M has internal Thermal-Shutdown Protection function.

The device is packaged in advanced full-Green compliant Wafer Level Chip Scale Packaging (WLCSP12).

Features

- 6A Continuous Current Capability
- Typical R_{ON}: 12.5mΩ N-Channel MOSFET
- VIN Operating Range: 2.5V to 28V
- Over-Voltage Lockout: V_{OVLO}=12.1V(TYP).
- Over-Voltage-Protection Response Time: 50ns(TYP)
- OVLO Threshold Range: +4V to +24V
- Startup Debounce Time: 21ms(TYP)
- Internal Thermal-Shutdown Protection
- Surge Immunity to ±100V
- ESD Protected(HBM): ±4KV
- MSL1
- WLCSP12 Package (ball pitch=0.4mm)

Part No.	Package	MSL
ET9555M	WLCSP12 (1.825mm×1.285mm, ball pitch=0.4mm)	Level 1

Application

- Smartphones, Tablet PC
- HDD, Storage and Solid State Memory Devices
- Portable Media Devices, Laptop & MID
- SLR Digital Cameras
- GPS and Navigation Equipment

Pin Configuration

Pin Function

Pin	Name	Description
A1	ĒN	Device Enable. Active low.
A2,A3,B2	OUT	Output Voltage. Output of internal switch. Connect OUT pins together for
		proper operation.
A4,B4,C4	GND	Ground. Connect GND pins together for proper operation.
B1	BUS_DET	Regulation output of VBUS.
B3,C2,C3	IN	Voltage Input. Connect IN pins together for proper operation.
		External OVLO Adjustment. Connect OVLO to GND when using the internal
C1	OVLO	threshold. Connect a resistor-divider to OVLO to set a different OVLO
		threshold; this external resistor-divider is completely independent of the internal
		threshold.

ET9555M

Block Diagram

Functional Description

The OVP switch with over-voltage protection feature a low 12.5m Ω (TYP) on-resistance (R_{ON}) internal FET and protect low-voltage systems against voltage faults up to 28VDC. If \overline{EN} is in the logic low state, when the input voltage (V_{IN}) exceeds 12.1V, the internal FET is quickly turned off to prevent damage to the protected downstream components. If \overline{EN} is in the logic high state. The ET9555M will disables the protect low-voltage system.

When input (OVLO) is set lower than 0.2V. The over-voltage protection threshold is 12.1V.

The over-voltage protection threshold can also be adjusted by external resistors when input (OVLO) is set higher than 0.3V.

$$V_{\text{IN}_{\text{OVLO}}} = V_{\text{OVLO}_{\text{TH}}} \times (1 + R1/R2)$$

Note: V_{OVLO_TH} = 1.2V(TYP)

Thermal Shutdown

The internal FET turns off when the junction temperature exceeds +150°C (TYP). The device exits thermal shutdown after the junction temperature cools by 20°C (TYP).

USB OTG Operation

If $V_{IN}=0V$ and OUT is supplied by OTG voltage, the body diode of the OVP switch conducts current from OUT to IN and the voltage drop from OUT to IN is approximately 0.7V. When place \overline{EN} pin in the logic low state and $V_{IN}>V_{UVLO}$, internal charge pump begins to open the OVP switch after debounce time. After switch is fully

ET9555M

on, current is supplied through switch channel and the voltage drop from OUT to IN is minimum. When place \overline{EN} pin in the high state, the OVP switch will not turn on unless \overline{EN} pin is pulled low, the high forward voltage drop of 0.7V and consequent high power dissipation will remain. It is highly recommended to place \overline{EN} pin in the logic low state in all OTG applications.

Please note in OTG mode, under no circumstance should any load, or any voltage be connected to BUS_DET.

Input Capacitor

To limit the voltage drop on the input supply caused by transient inrush current when the switch turns on into load capacitor or short-circuit, a capacitor 0.1μ F or lager must be placed between the IN and GND pins.

Output Capacitor

A $1\mu F$ or lager capacitor should be placed between the OUT and GND pins.

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Parameters			Min	Max	Unit
VIN	V _{IN} to GND			-2.0 ⁽¹⁾	29	V
Vout	Vout to GND			-0.3	28	V
Vovlo	OVLO to GND			-0.3	7	V
V/EN		EN to GND		-0.3	7	V
VBUS_DET		BUS_DET to GND		-0.3	10	V
Isw1	Maximum	n Continuous Current of s	witch IN-OUT		6	А
Isw2	Maximum	Peak Current of switch I	N-OUT(10ms)		9	А
PD	Power Dissipation at T_A = +25°C				1.47	W
Tstg	Storage Junction Temperature			-65	+150	°C
TA	Operating Temperature Range			-40	+85	°C
TSOLD	Soldering Temperature (reflow).				+260	°C
TJ	Max Junction Temperature				+150	°C
			Air Discharge	15.0		
ESD		System Level ESD	Contact Discharge	8.0		
	Electrostatic Discharge	Human Body Model,	All Pins	>4.0		kV
	Capability	Capability Charged Device	All Pins	>1.5		
		Model, JESD22-C101				
Surge		IEC 61000-4-5,	VBUS	±100		V
Curgo		Surge Protection				-

Note1: Pulsed, 50ms maximum non-repetitive.

Electrical Characteristics

Unless otherwise noted, V_{IN}=2.5V to 28V, T_A=-40°C to 85°C, Typical values are at V_{IN}=5V, I_{IN}≤2A, C_{IN}=0.1 μ F and T_A=25°C.

Symbol	Parameters	Conditions	Min	Тур	Max	Unit	
TVS Characteristics							
V _{BR}	Reverse Breakdown Voltage	I⊤=10mA, T _A =25°C	29	32	36	V	
I _{PP}	Peak Pulse Current ⁽²⁾	t _p =8/20μs(+100V), T _A =25°C	25	32.5	44	А	
Vc	Clamping Voltage ⁽²⁾	Iթթ=32.5A, t _P =8/20µs, T _A =25°C	22	35	45	V	
IPP_NEG	Reverse Peak Pulse Current ⁽²⁾	t _p =8/20μs(-100V surge) , T _A =25°C	-40	-48.5	-55	А	
V _{C_NEG}	Reverse Clamping Voltage ⁽²⁾	I _{PP} =-48.5A, t _p =8/20μs, T _A =25°C	-1	-3	-6	V	
VF	Forward Voltage	I⊧=10mA, T _A =25°C	0.2	0.6	0.9	V	
Basic Opera	tion		•	•	L		
VIN	Input Voltage		2.5		28	V	
lin	VIN Quiescent Current	V _{IN} =5V, V _{/EN} =0V, OUT floating	110	150	220	μA	
I _{IN_OVLO}	OVLO Supply Current	V _{IN} =15V, V _{/EN} =0V, OUT floating	160	200	260	μA	
Ron	On-Resistance of Switch IN-OUT	V _{IN} =5.0V, I _{OUT} =1A, T _A =25°C	9	12.5	17	mΩ	
Vovlo	Over-voltage Protect of V _{IN}	Over-voltage V _{IN} Rising 11.8		12.1	12.4	V	
	Over-voltage Protect hysteresis of V _{IN}		0.15	0.3	0.45	V	
	Adjustable OVLO Threshold Range		4		24	V	
V _{OVLO_TH}	OVLO Set Threshold		1.18	1.2	1.22	V	
Vovlo_sele ct	External OVLO Select Threshold		0.2		0.3	V	
Vdet1	Regulation Output of BUS_DET	V _{IN} =5V, V _{/EN} =0V, I _{DET} =1mA and C _{BUS_DET} =0.1µF	4.8			V	
Vdet2	Regulation Output of BUS_DET	RegulationVIN=9V, V/EN=0V, IDET=10mAOutput of BUS_DETand CBUS_DET=0.1µF		6.7	7.5	V	
Vina	Undervoltage	V _{IN} Rising	1.7	2.0	2.5	V	
V UVLO	Protect of VIN	V _{IN} Falling	1.5	1.8	2.3	V	
Iovlo	OVLO Input Leakage Current	Vovlo=Vovlo_th	-100		100	nA	

Electrical Characteristics (Continued)

Symbol	Parameters	Conditions	Min	Тур	Max	Unit
VIH	EN Input LogicVIN=2.5V to 28VHigh VoltageVIN=2.5V to 28V		1.4			V
VIL	EN Input Logic Low Voltage	V _{IN} =2.5V to 28V			0.3	V
T _{SHDN}	Thermal Shutdown ⁽²⁾			150		°C
TSHDN_HYS	Thermal-Shutdown Hysteresis ⁽²⁾			20		°C
Dynamic Characteristics: see figure						
t _{DEB}	Debounce Time	Time from V _{UVLO} <v<sub>IN< V_{OVLO} to V_{OUT}=10% of V_{IN}</v<sub>		21	32	ms
tss	Soft-Start time	Time from V _{UVLO} <v<sub>IN< V_{OVLO} to V_{OUT}=90% of V_{IN}</v<sub>		23	35	ms
toff_res	Switch Turn-off Response Time ⁽²⁾	R _L =100Ω, No C _L , V _{IN} > V _{OVLO} to V _{OUT} stop rising		50	80	ns

Note2: This parameter is guaranteed by design and characterization.

Timing Waveform

UBM Structure

Application Circuits

Note1: R1 and R2 are only required for adjustable OVLO; otherwise connect OVLO to GND.

Note2: if BUS_DET is not used, C_{BUS_DET} can use 0.047uF.

Note3: This application circuit is for reference only.

Package Dimension

WLCSP12

Revision History and Checking Table

Version	Date	Revision Item	Modifier	Function & Spec Checking	Package & Tape Checking
0.0	2023-03-24	Original Version	Wum	Wuhs	Liujy
1.0	2023-08-01	Modified some parameters	Wum	Wuhs	Liujy
1.1	2023-11-02	Modified some parameters	Wum	Wuhs	Liujy