

Linear Single Cell Li-Ion Battery Charger with Power Path Management,

I²C Control and UART Communication

General Description

ET9563 is a linear single cell Li-ion battery charger integrated power path management. The charger uses a CC/CV charge profile required by Li-ion battery. It also accepts an input voltage up to 18V and will cut off rapidly when the input voltage exceeds OVP threshold (Typically 6.0V). The charger features precharge, constant current and constant voltage regulation, charge termination, and charge status.

The internal Power Path Management can balance the input current to system and battery, which ensures continuous power to the system from input, battery or both. Also ET9563 integrates dynamic power management. When system load is heavy, the charge current will be reduced to keep input current or input voltage in regulation.

ET9563 provides over-current protection from input to the system and battery to the system. This can prevent the Li-on battery from being damaged by excessively high current. Input and battery under-voltage lockout(UVLO) will cuts off the load path when power supply is unstable. An integrated I²C control interface allows the ET9563 to program the critical parameters, such as battery constant voltage, constant charge current, precharge threshold, battery regulation voltage, battery UVLO, input voltage regulation, input current regulation, and system voltage regulation.

The ET9563 can support UART communication channel between UART and VIN pin.

The ET9563 can support TWS earphones in/out auto-detection.

The ET9563's high integration can simply system design and reduce the number of components outside. The device is packaged in advanced Full-Green compliant CSP12 package.

Device Information

Part No.	Package	MSL
ET9563	CSP12(1.65mm×2.05mm,0.4mm pitch)	Level 1

Features

- 18V Maximum Rating for VIN Power
- Internal 6.0V Over Input Voltage Protection
- Fully Autonomous Charger for Single-Cell Li-on Battery
- Auto Power Path Management for Powering the System and Charging the Battery
- Integrated Power MOSFETs for System Load and Charging Mode
- ±0.5% Charging Voltage Accuracy
- Support Setting Communication Channel Between UART and VIN Port
- Support JACK-in/OUT Auto-detection.
- Support One-wire Protocol Commutation with TWS BOX Through Voltage De-modulation and Current Modulation in VIN Port.
- I²C Interface for Setting Parameters
- Built-In Input and Battery UVLO Protection
- Thermal Limiting Regulation On-Chip
- Outside OTP Sensing by NTC Pin
- CSP12 Package

Application

- Smart Watches
- Wearable Devices
- IP Camera

Pin Configuration

Pin Function

Pin No.	Pin Name	Description
A1	IN	Power Supply Input Pin
A2	SYS	System Connect Pin
A3	BAT	Charge Output Pin
B1	VCAP	Capacitor of VIN
B2	NTC	Thermal Sense Pin
B3	VDD	Internal Control Power Supply
C1	UART	UART Communication Pin
C2	INT	Open Drain Interrupt Output(with 200k pull-up resistor to VIO)
C3	GND	Ground
D1	VIO	Power Supply of UART Communication
D2	SDA	I ² C interface data
D3	SCL	I ² C interface clock

Block Diagram

Functional Description

ET9563 is a linear single cell Li-ion battery charger integrated power path management. The charger uses a CC/CV charge profile required by Li-ion battery. It also accepts an input voltage up to 24V and will cut off rapidly when the input voltage exceeds OVP threshold(Typically 6.0V). The charger features precharge, constant current and constant voltage regulation, charge termination, and charge status.

The internal Power Path Management can balance the input current to system and battery, which ensures continuous power to the system from input, battery or both. It allows for separate control between the system and the battery, and has high priority to power supply system.

The internal Dynamic Power Management can regulates the input voltage to V_{IN_REG} when the load is over the input power capacity. The charge current is reduced to keep the input current or input voltage in regulation when DPM occurs. If the charge current is at zero and the input source is still over-loaded, system voltage starts to fall down. Once the system voltage falls below the battery voltage, ET9563 enters battery supplement mode.

ET9563 provides over-current protection from input to the system and battery to the system. This can prevent the Li-on battery from being damaged by excessively high current. Input and battery under-voltage lockout(UVLO) will cuts off the load path when power supply is unstable. An integrated I²C control interface

allows the ET9563 to program the critical parameters, such as battery constant voltage, constant charge current, precharge threshold, battery regulation voltage, battery UVLO, input voltage regulation, input current regulation, and system voltage regulation.

The ET9563 can support UART communication channel between UART and VIN pin.

The ET9563 can support TWS earphones in/out auto-detection.

ET9563 can support one-wire protocol commutation with TWS BOX through voltage de-modulation and current modulation in VIN port.

ET9563 include Battery Discharge Mode, Battery Supplement Mode, Battery Charge Mode, Only Power System Mode and Shipping Mode, Figure 1 is shown the internal state machine conversion.

- (1) Battery Discharge Mode: Only Battery to SYS Path is enabled.
- (2) Battery Supplement Mode: IN to SYS path and Battery to SYS path are enabled.
- (3) Battery Charge Mode: IN to SYS path and IN to Battery path are enabled.
- (4) Only Power System Mode: Only IN to SYS Path is enabled.
- (5) Shipping Mode: All paths are disabled, ET9563 enters into low power consumption state.

Figure 1. State Machine Conversion

Power Supply

The internal bias circuit of the IC is powered from the higher voltage of IN or BAT. When IN>2.4V or BAT>2V, the sleep comparator, battery depletion comparator, and the battery MOSFET driver are active. After 2ms, the I²C interface is ready for communication and all registers are reset to the default value. The host can access all registers.

Input OVP and UVLO

The ET9563 has an input over-voltage protection (OVP) threshold and an input UVLO threshold. Once the

input voltage exits the normal input voltage range, the Q1 MOSFET is turned off immediately.

When the input voltage is identified as a good source, a 20ms handshake timer(include ACK time) is active. If the input power is still sufficient until the 20ms timer expires, the system starts up. Otherwise, Q1 remains off. Figure 2 depicts the operation profile.

Figure 2. Input Power Detection Operation Profile

Power Path Management

The IC employs a direct power path structure with the battery MOSFET decoupling the system from the battery, which allows for separate control between the system and the battery. The system is given the priority to start up even with a deeply discharged or missed battery. When the input power is available, even with a depleted battery, the system voltage is always regulated to V_{SYS_VSET} by the integrated LDO MOSFET. The system voltage can be programmable via Reg15[7:4].

As shown in Figure 3, the direct power structure is composed of a frond-end LDO MOSFET between IN and SYS and a battery FET between SYS and BAT. The Input LDO can be changed to switch mode by set EN_DRC: Reg1D[5]=1; And The input LDO can be closed by set EN_HIZ: Reg1D[7]=1.

IN LDO mode, when the input voltage is higher than V_{SYS_REG} , the system voltage is regulated to V_{SYS_REG} . When the input voltage is lower than V_{SYS_REG} , the LDO MOSFET is fully on with the input current limit.

IN switch mode, the voltage of SYS will not higher than the V_{SYS_VSET} which set by Reg15[7:4].

Figure 3. Power Path Management Structure

Figure 4. Battery Charge Profile

Battery Charge Profile

The IC provides three main charging phases: precharge, constant current charge, and constant voltage charge (see Figure 4).

1. Phase 1 (precharge): The IC is able to safely precharge the deeply depleted battery until the battery voltage reaches the precharge to the fast charge threshold (V_{BAT_LOW}). The precharge current is programmable via Reg13[3:0]. If V_{BAT_LOW} is not reached before the precharge timer (1hr) expires, the charge cycle is ceased, and a corresponding timeout fault signal is asserted.

2. Phase 2 (constant current charge): When the battery voltage exceeds V_{BAT_LOW} , the IC enters a constant-current charge (fast charge) phase. The fast charge current can be programmable via Reg12[7:0].

3. Phase 3 (constant voltage charge): When the battery voltage rises to the pre-programmable charge full voltage (V_{BAT_REG}) set via Reg13 bit [6:0], the charge mode changes from CC mode to CV mode, and the charge current begins to taper off.

Assuming the termination function (EN_TERM) is set via Reg17[7] = 1, the charge cycle is considered complete when the following conditions are valid:

- The charge current (I_{BAT}) reaches the end of charge (EOC) current threshold(I_{TERM}), and the 64ms delay timer is initiated.
- During the 64ms delay period, I_{BAT} is always smaller than I_{EOC}.

After the 64ms delay timer expires, the ET9563 enters into Top Off mode, the charge current will tape off until the Top Off timer expires. The charge current will be terminated, and the charge status is marked after Top Off timer expires.

The charge current is terminated at the same time if TERM_TMR is set via Reg17[6] = 0; otherwise, the charge current keeps tapering off.

If $EN_TERM=0(Reg17[7] = 0)$, the termination function is disabled, the above actions will not occur. During

the charging process, the actual charge current may be less than the register setting due to other loop regulations, such as dynamic power management (DPM) regulation (input voltage, input current) or thermal regulation. If the input current or the input voltage reach their limits during the CV charge, the charge full termination is not influenced when the charge current is not so close to the EOC current specification.

A new charge cycle starts when the following conditions are valid:

- The input power is recycled
- Battery charging is enabled by the I²C

Under the following conditions:

- No thermistor fault at NTC
- No safety timer fault
- No battery over-voltage
- BATFET is not forced to turn off

Switch Charge Mode

The Charge mode can be changed to switch mode by set Reg1D[5]=1(EN_DRC). And the fast charge current set by Reg12[7:0] can be used as limit current in switch mode. In switch mode, the MOSFETs of VIN to SYS, SYS to BAT are in switch state. And the low current protection can be set by Reg17[5:0] (I_{UCP}), when the charge current smaller than I_{UCP} , the state register Reg32[4]=1.

In switch charge mode, when the ET9563 enter into OVP, UVP, OTP, OCP, NTC and so on, it will exit from switch charge mode and stop charging. It will enter into switch charge mode again after setting registers CEB(Reg1D[6]), EN_DRC(Reg1D[5]) again.

Automatic Recharge

When the battery is fully charged and the charging is terminated, the battery may be discharged due to system consumption or self-discharge. When the battery voltage is discharged below the recharge threshold, and VIN is still in the operation range, the IC begins another new charging cycle automatically without the requirement of restarting a charging cycle manually.

The auto-recharge function is valid only when EN_TERM=1 and TERM_TMR=0.

Battery Over-Voltage Protection (OVP)

The IC is designed with a built-in battery over-voltage limit about 130mV higher than V_{BAT_REG} . When the battery over-voltage event occurs, the IC suspends the charging immediately and asserts a fault.

Input Current and Input Voltage Based Power Management

To meet the input source (usually USB) maximum current limit specification, the IC uses input current-based power management by monitoring the input current continuously. The total input current limit can be programmed via the I²C to prevent the input source from overloading.

If the pre-set input current limit is higher than the rating of the input source, back-up input voltage-based power management also works to prevent the input source from being overloaded. If either the input current

limit or the input voltage limit is reached, the Q1 MOSFET between IN and SYS are regulated so that the total input power is limited. As a result, the system voltage drops. Once the system declines to the minimum value of V_{SYS} -90mV or V_{IN} -160mV, the charge current is reduced to prevent the system voltage from dropping further.

Voltage-based DPM regulates the input voltage to V_{IN_REG} when the load is over the input power capacity. V_{IN_REG} set by Reg10[7:4].

Battery Supplement Mode

The charge current is reduced to keep the input current or input voltage in regulation when DPM occurs. If the charge current is at zero, and the input source is still overloaded due to a heavy system load, the system voltage starts to fall off. Once the system voltage falls below the battery voltage, the IC enters battery supplement mode. When the system voltage is 30mV below the battery voltage, the ideal diode mode is enabled. The battery MOSFET is regulated to maintain $V_{BAT}-V_{SYS}$ at 22.5mV. If the supplement current $I_{DSG}*R_{ON_BAT}$ is higher than 22.5mV, the battery MOSFET is fully turned on to keep the ideal forward voltage. When the system load decreases, once V_{SYS} is higher than $V_{BAT}+20mV$, ideal diode mode is disabled.

Figure 5 shows the dynamic power management and battery supplement mode operation profile.

When VIN is not available, the IC operates in discharge mode, and the battery MOSFET is always fully on to reduce loss.

Figure 5. Dynamic Power Management and Battery Supplement Operation Profile

Battery Charge Full Voltage

The battery voltage for the constant voltage regulation phase is V_{BAT_REG} . When V_{BAT_REG} is 4.2V, it has a ±0.5% accuracy over the ambient temperature range of 0°C to +50°C.

Thermal Regulation and Thermal Shutdown

The IC monitors the internal junction temperature continuously to maximize power delivery and prevent the chip from overheating.

When the internal junction temperature reaches the pre-set limit of T_{REG} (default 120°C), the IC reduces the charge current to prevent higher power dissipation. The multiple thermal regulation thresholds from 60°C to 120°C help the system design meet the thermal requirement in different applications. The junction temperature regulation threshold can be set via Reg18 bit [6:5].

When the junction temperature reaches 150°C, IN to SYS path and SYS to BAT path will be closed. But the BAT to SYS discharge path is still open.

Negative Temperature Coefficient (NTC) Temperature Sensor

NTC allows the IC to sense the battery temperature using the thermistor usually available in the battery pack to ensure a safe operating environment for the chip. A thermistor with an appropriate value(10K, B25/85=3435K) should be connected from NTC to GND. A 50µA bias current will be added to the thermistor, and the voltage on NTC port depends on the temperature. In order to reduce the power consumption, the ET9563 will detect the voltage of the NTC port by using a periodic interval, the register Reg18[2:1] can set the duty of sampling the voltage for NTC port, the cycle is 5 seconds.

I ² C (Eurotion	
EN_NTC	EN_PCB_OTP	Function
0	Х	Disable
1	1	NTC(JEITA)
1	0	PCB OTP

The I²C default setting is the PCB OTP. The function can be changed through the I²C (see Table 1).

Table 1. NTC Function Selection Table

When PCB OTP is selected, if the NTC voltage is lower than the NTC hot threshold, both the LDO MOSFET and battery MOSFET are off. The PCB OTP fault sets the NTCH_FAULT status (Reg31 bit [2:0]=101) to indicate the fault. Operation resumes once the NTC voltage is higher than the NTC hot threshold.

The NTC function only works in charge mode. Once the NTC voltage falls out of the divide ratio (the temperature is outside the safe operating range), the IC stops the charging and reports it on the status bits. Charging resumes automatically after the temperature falls back into the safe range.

When Reg18[4:3]=11, ET9563 enter into NTC(JEITA) mode, there are four thermal threshold T1, T2, T3, T4. T2, T3 can be set by Reg19[3:2] (JEITA_T3_TEMP, JEITA_T2_TEMP).

If the battery temperature lower than T1, ET9563 enters into cold state, and stop charging.

If the battery temperature lower than T2, higher than T1, ET9563 enters into cool state, and the charge current will be reduced. The charge current in cool mode can be set by Reg19[7:6] (JEITA_T2_ISET).

If the battery temperature lower than T3, higher than T2, it is normal state.

If the battery temperature lower than T4, higher than T3, ET9563 enters into warm state, the battery regulation voltage will be reduced. The battery regulation voltage can be set by Reg19[5:4] (JEITA_T3_VSET).

If the battery temperature higher than T4, ET9563 enters into hot state, and stop charging.

The NTC state can be read by Reg31[2:0].

Safety Timer

The IC provides both a precharge and a fast charge safety timer to prevent extended charging cycles due to abnormal battery conditions. The safety timer is one hour when the battery voltage is below $V_{PRE_CHAR_VSET}$. The fast charge safety timer begins when the battery enters fast charging. The fast charge safety timer can be programmed through the I²C. The safety timer feature can be disabled via the I²C.

The following actions restart the safety timer:

- A new charge cycle is kicked in Reg1D bit[6] is written from 1 to 0 (charge enable)
- Reg1B bit [3] is written from 0 to 1 (safety timer enable)
- Reg1D bit [0] is written from 0 to 1 (software reset)

Host Mode and Default Mode

The IC is a host-controlled device. After the power-on reset, all registers are in the default settings.

Any write to the IC changes it to host mode. All charge parameters are programmable. If the watchdog timer (Reg1C bit [2:1]) is not disabled, the host must reset the watchdog timer regularly by writing 1 to the Reg5A bit [0] before the watchdog timer expires to keep the device in host mode. Once the watchdog timer expires, the IC returns to default mode, and the SYS will be pull down to GND by 2s, at this time, Reg31 bit[7]=1, then the next watchdog time cycle will be started automatically. If the watchdog timer has not been reset all the time, the SYS reset pulses will be generated all the time.

The watchdog timer limit can also be programmed or disabled by Reg1C bit[2:1]. When there is VIN, the default state of the watchdog timer is on, and the value is set as 160s. When there is no VIN, the default state of the watchdog timer is suspended. (Figure 6) Also, if the Reg1C bit[0] set to 1, then watchdog timer can also work when there is only Battery and no VIN, at this time, if watchdog timer expires, the SYS will be reset by 2s only once.

The operation can also be changed to default mode when one of the following conditions occur:

- Refresh input without battery
- Re-insert battery with no VIN
- Register reset Reg1D bit [0] is reset

Figure 6. Default mode and Host mode Selection

Battery Discharge Function

If battery is connected and the input source is missing, the battery MOSFET is fully on when VBAT is above the V_{UV_BAT} threshold. The 100m Ω battery MOSFET minimizes conduction loss during discharge. The quiescent current of the IC is as low as 13µA in this mode. The low on resistance and low quiescent current help extend the running time of the battery.

Over-Discharge Current Protection

The IC has an over-discharge current protection in discharge mode and supplement mode. Once I_{BAT} exceeds the programmable discharge current limit (default 2A), the battery MOSFET is turned off after a 60 us delay, and the ET9563 enters hiccup mode in over-current protection. The discharge current can be programmed high to 3.2A through the I²C.If the discharge current goes high to reach the internal fixed current limit (about 3.7A), the battery MOSFET is turned off and starts hiccup mode immediately. The interval of the hiccup mode is 800 μ s.

Similarly, when the battery voltage falls below the programmable V_{UV_BAT} threshold (default 2.8V), the battery MOSFET is turned off to prevent over-discharge.

System Short-Circuit Protection (SCP)

The ET9563 features SYS node short-circuit protection (SCP) for the IN to SYS path and the BAT to SYS path.

The system voltage is continuously monitored. If V_{SYS} is lower than 1.5V, the system (SCP) for the IN to SYS path and the BAT to SYS path are active. I_{BATOC} is decreased to half of the original value.

1) IN to SYS path: Once I_{IN} is over the 360mA protection threshold, both the LDO MOSFET and the BAT MOSFET are turned off immediately, and the IC enters hiccup mode. Otherwise, the max current limit (360mA) are not reached and the setting input current limit are reached, and I_{IN} is regulated at IN_ILMTI_SET. Hiccup mode also starts after a 60µs delay. The interval of the hiccup mode is 800µs.

2) BAT to SYS path: Once I_{BAT} is over the 3.7A protection threshold, both the LDO MOSFET and the BAT MOSFET are turned off immediately, and the IC enters hiccup mode. When the battery discharge current limit threshold is reached, hiccup mode starts after a 60µs delay. The interval of the hiccup mode is 800µs.

If a system short-circuit occurs when both the input and battery are present, the protection mechanism of both paths work, with the faster one dominating the hiccup operation. (Figure 7)

Figure 7. System Short-Circuit Protection

Interrupt to Host (INT)

The IC has an alert mechanism which can output an interrupt signal via INT to notify the system of the operation by outputting a 256µs low-state INT pulse. All of below events can trigger the INT output:

- Input Good Source detected
- UVLO or OVP for IN Port
- Charge Completed
- Incoming and outgoing box detection

INT state register can be read through Reg40、Reg41、Reg42H、Reg43H、Reg44H.

When any fault occurs, the IC sends out an INT pulse and latches the fault state in Reg40H, Reg41H, Reg42H, Reg43H, Reg44H.

The NTC fault is not latched and always reports the current thermistor conditions.

If we set Reg1B[7]=0, the INT interrupt output will be closed. The reset and wake up function of INT still work. The corresponding interrupt can be closed separately by Reg50H, Reg51H, Reg52H, Reg53H, Reg54H.

Battery Disconnection Function

In applications where the battery is not removable, it is essential to disconnect the battery from the system:

Case A: to prevent excessive capacity discharge during the device is in shipping or storage.

Case B: allow the system power reset

The ET9563 provides both shipping mode and system reset mode for different application requirements.

1). Shipping Mode:

Entering the Shipping mode:

1) Enter the shipping mode by setting the register bit (EN_SHIPPING_MODE), Reg1D bit[4].

During the normal operation, the battery MOSFET is turned on and this bit is 0. If this bit is set to 1 through I²C, the battery MOSFET is turned off, and the ET9563 enters shipping mode after a delay time, the delay time can be set by Reg1A bit[4:3] (SHIPMODE_ENTER_TIME), the default time is 1s.

When VIN is in place, we enter the shipping mode, the SYS will not be closed, and the chip will enter the shipping mode after the VIN removed.

2) Enter the shipping mode by decoding the code of VIN voltage (Serial Communication of VIN).

When VIN receives the following wave, the value of Reg22(COMT_RX) is 04H, then Reg43[1]=1 (RCV_SD_INT), this bit will start the shipping mode enter timer (SHIPMODE_ENTER_TIME), before the shipping mode enter timer expires, the register RCV_SD_INT(REG43[1]) is reset, ET9563 will stop entering shipping mode.

Exiting shipping mode: The IC can exit the shipping mode by pulling INT down or a valid VIN power on.

 When the IC is in the shipping mode and only the Battery is present, pulling INT down by pushing KEY1 (see the "TYPICAL APPLICATION CIRCUIT") to make INT keep low with 100ms/2s, could wake the ET9563 up from shipping mode. After exiting shipping mode, the EN_SHIPPING_MODE will be reset to 0. (refer to table 2 and figure 8)

	INT Signal	IC Exists the Shipping Mode
Case1(TINT_EX_SHIPP ING_DEL=0),	One negedge of INT and	At Once

Reg1B Bit6	INT Keep Low level>2s	
Case2(TINT_EX_SHIPP ING_DEL=1),	One negedge of INT and	At Open
Reg1B Bit6	INT Keep Low level >100ms	At Once

Table 2. Exit Shipping mode with BAT present only

Figure 8. Enter Shipping Mode and Exit Shipping Mode by INT Low Level

2) When the IC is in the shipping mode and VIN connects to a valid power supply, the ET9563 could be woken up after 120ms. (refer to Table 3 and Figure 9).

VIN voltage effective condition:

IN Signal(Power Good Signal)	IC Exists the Shipping Mode	
One posedge of IN Power Good and Keep Power	At Once	
Good Signal>120ms	At Once	

Table 3. Exit Shipping mode with VIN powers on

Figure 9. Enter Shipping Mode and Exit Shipping Mode by VIN Good Signal

In Figure 9, T_{VSYS_ON} (SYS voltage output time when ET9563 enter shipping mode with VIN is present) has following conditions:

 Reg31[5:4](PLUAG_STAT[1:0])=11(In box state), VIN is present, when T_{VSYS_ON}=250µs, SYS will have an output.

- Reg31[5:4](PLUAG_STAT[1:0])=00/01/10(other states),VIN is present, if communication is finished, received ACK,SYS will have an output, T_{VSYS_ON} = 20ms.
- Reg31[5:4](PLUAG_STAT[1:0])=00/01/10(other states),VIN is present, if communication isn't finished, received NO ACK,SYS will have an output, T_{VSYS_ON} = 60ms_o

3) In shipping mode, EN_SHIPPING_MODE keeps high level, ET9563 can exit shipping mode by setting Reg1D[0] = 1(REG_RST), then EN_SHIPPING_MODE reset to 0.

4) If reset the EN_SHIPPING_MODE during the shipping delay time (SHIPMODE_ENTER_TIME), ET9563 will stop entering shipping mode.

5) If VIN is present, ET9563 is in shipping mode, ET9563 can exit shipping mode by reset EN_SHIPPING_MODE.

2). Reset Mode(SYS pull down to GND for a period of time)

When the system needs to be reset, ET9563 provides three methods to reset system:

1) Once the logic at INT is set to low for more than 6s/12s/16s/20s (T_{RST_DEL},Reg1A[2:1]), the SYS is disconnected from the system by turning off the LDO MOSFET and the BAT MOSFET. At the same time SYS will be discharged by internal discharge circuit, the reset time is 2s/4s (Reg1A[0]), then the LDO MOSFET and the BAT MOSFET will work again, SYS will have an output. (Figure 10)

2) When watchdog time is overflow, the SYS is disconnected from the system by turning off the LDO MOSFET and the BAT MOSFET, SYS will pull down to GND for 2s, then the LDO MOSFET and the BAT MOSFET will work again, SYS will have an output. If ET9563 is in charge watchdog, the watchdog timer has not been reset all the time, the SYS reset pulses will be generated all the time. If ET9563 is in discharge watchdog, the SYS reset pulses will be generated only once.

3) When VIN receives voltage data Reg22[3:0]=0x05 (COMT_RX) by serial communication, see following wave, ET9563 will start the delay timer. The timer can be set by REBOOT_ENTER_TIME, Reg1A[7:6] (0s/1s/2s/4s). When the timer expires, ET9563 will turn off the LDO MOSFET and the BAT MOSFET, SYS will pull down to GND for 2s, then the LDO MOSFET and the BAT MOSFET will work again, SYS will have an output. (Figure 10)

Figure 10. System Reset Function Operation Profile

Turn on Communication Channel Between UART and VIN

1) Force on

(1) $V_{IN} < V_{UVLO}$

(2) Set Reg20[7] = 1 (FORCE_UART_ON)

When the condition (1) is satisfied, operation (2) can immediately open the path from VIN to UART, otherwise, it will not be opened.

2) VIN receives voltage data by serial communication

(1) VIN receives 06H data by serial communication (See following figure), and reply ACK to Buck-Boost (ET9580) through VIN pin.

(2) After receiving the 06H data and reply ACK, ET9563 waits for the VIN waveform to jump back from 0V to 1.8V. If this change occurs, the VIN to UART path will be automatically opened, and vice versa.

Turn off Communication Channel Between UART and VIN

1) Force off, set Reg20[6]=1(FORCE_UART_OFF).

2) Make $V_{IN} > V_{UVLO}$, the VIN to UART path will be automatically closed.

Heart Beat Mode

The heartbeat mode periodically generates a fixed pulse current at the VIN pin, in order to provide detection conditions for the box to determine whether the earphone is in the box. The start conditions are as follows:

- (1) enable Reg1C[6] (EN_HB)
- (2) VIN is not in serial communication mode
- (3) The current from VIN to SYS is smaller than 15mA (including VIN to SYS off)

The pulse current waveform in Heart Beat Mode as follows:

Earphone in/out Auto-detection

1). Earphone in Auto-detection

When ET9563's VIN pin is powered on, VIN pin will send a handshake data. When BAT voltage lower than V_{BAT_LOW} (Reg1C[4:3]),VIN will send data 05H. When BAT voltage higher than V_{BAT_LOW} (Reg1C[4:3]), VIN will send data 04H. If VIN receives ACK, ET9563 will set Reg31[5:4] = 11 (PULG_STAT, In Box state). If no response is received after three times, the status flag Reg31 [5:4] (PULG_STAT) will be automatically set to 10 (illegal power supply)

ET9653 can operate the Reg21 register through I²C, and can send any data. As long as it receives an ACK response, it will immediately set the box in flag Reg31[5:4] = 11 (PULG_STAT). If an ACK is not received, it will be repeated twice every 10ms. If no response is received after three times, the status flag Reg31[5:4] (PULG_STAT) will be automatically set to 10 (illegal power supply)

Timing	- Time Specification	

Symbol	Min	Тур	Мах	Unit	Note
lpre			1	mA	
H	8	10	12	mA	Voltage High Level
IL			1	mA	Voltage Low Level
Ti_transition			100	μs	VH to VL;VL to VH;
Ti_pre	0.7	1	1.3	ms	Pretreatment time
Tva	0.4	0.5	0.6	ms	Reply ACK preprocessing time
Ti_data"1"	0.4	0.5	0.6	ms	
Ti_data"0"	0.8	1	1.2	ms	
Ti_d			150	μs	Demodulated current signal response time

2). Earphone in Auto-detection

Earphone out auto-detection condition:

- (1) Enable earphone out auto-detection, set Reg1C[5]=1 (EN_ONLINE_DET)
- (2) $V_{IN} < 0.7V$, keep 50ms

(3) When the condition (2) is just satisfied, ET9563 will automatically send a 2mA current with 32µs width pulse at the VIN pin to detect the VIN voltage. When the VIN voltage is detected to be less than 1.5V, the state register Reg31[5:4] (PULG_STAT) will be set to 01 (abnormal in box). When the VIN voltage is detected to be higher than 1.5V, the state register Reg31[5:4] (PULG_STAT) will be set to 00 (Out of Box).

In addition, after an automatic detection in (3), the function of periodically sending 2mA current pulses at the VIN pin can also be activated through I²C. The activation condition is to set Reg1B[4] =1 (EN_RC). When the enable sends a 2mA current with 32µs width pulse once, if an abnormality in the box (PULG_STAT=01) is detected, the bit will not be cleared. After every 100ms, a 2mA current with 32µs width pulse will continue to be sent, and the out of box and abnormal in box detection will be performed again, until the out of box state is detected (PULG_STAT=00), this bit will automatically reset and periodic detection will stop. This bit can be activated repeatedly.

If the VIN pin periodically sends a 2mA current pulse function through the operation register in the out of box state, when the out of box state is detected again, the periodic transmission will not be started, and Reg1B [4] (EN_RC) will not be cleared. If it is necessary to detect again, it needs to be cleared and reset.

I²C REGISTER MAP

Chip Address: 0000110b (7bit) = 06H

Product ID/Address: 00H (Default: 90H)

Bit	Symbol	Description	REG_RST	WDT_RST	Read/Write	Default
Bit 7	PROD_ID [7]		NA	NA		
Bit 6	PROD_ID [6]		NA	NA		
Bit 5	PROD_ID [5]		NA	NA		
Bit 4	PROD_ID [4]	Draduat ID	NA	NA	Deed Only	10010000
Bit 3	PROD_ID [3]	Product ID	NA	NA	Read Only	00001001
Bit 2	PROD_ID [2]		NA	NA		
Bit 1	PROD_ID [1]		NA	NA		
Bit 0	PROD_ID [0]		NA	NA		

Device ID/Address: 01H (Default: 0EH)

Bit	Symbol	Description	REG_RST	WDT_RST	Read/Write	Default
Bit 7	DEV_ID [7]		NA	NA		
Bit 6	DEV_ID [6]		NA	NA		
Bit 5	DEV_ID [5]		NA	NA		
Bit 4	DEV_ID [4]	Davias ID	NA	NA	Deed Only	000011105
Bit 3	DEV_ID [3]	Device ID	NA	NA	Read Only	00001110000
Bit 2	DEV_ID [2]		NA	NA		
Bit 1	DEV_ID [1]		NA	NA		
Bit 0	DEV_ID [0]		NA	NA		

I²C Address/Address: 02H (Default: C0H)

Bit	Symbol	Description	REG_RST	WDT_RST	Read/Write	Default	
Bit 7	I ² C_ADDR[2]	000b:00H	NA	NA			
Bit 6	I ² C_ADDR[1]	001b: 01H	NA	NA		NA	
		010b: 02H					
		011b: 03H			Road only	Default:110(06H)	
		100b: 04H	NIA	NIA	Read only	Read only	ET9563
BILD		101b: 05H	NA	NA			
		110b: 06H					
		111b: 07H					
Bit 4	Reserved		NA	NA	Read only	0	
Bit 3	Reserved		NA	NA	Read only	0	
Bit 2	Reserved		NA	NA	Read only	0	
Bit 1	Reserved		NA	NA	Read only	0	
Bit 0	Reserved		NA	NA	Read only	0	

Bit	Symbol	Description	REG RST	WDT RST	Read/Write	Default
Input	Voltage Regulatior					
Bit 7	IN_VSET[3]	1b: 640mV	Y	Ν		
Bit 6	IN_VSET[2]	1b: 320mV	Y	Ν	Deed/wite	Denge: 2.00V
Bit 5	IN_VSET [1]	1b: 160mV	Y	N	Read/write	Default:4.60V(1001b)
Bit 4	IN_VSET [0]	1b: 80mV	Y	N		
Input	Current Limit (IIN_LI	м)				
Bit 3	IN_ILIMT[3]	1b: 240mA	Y	Ν		
Bit 2	IN_ILIMT[2]	1b: 120mA	Y	N	Read/write Ran Defa	
Bit 1	IN_ILIMT[1]	1b: 60mA	Y	N		Range: 50mA-500mA
Bit 0	IN_ILIMT[0]	1b: 30mA	Y	N		

Input Source Control Register/Address:10H (Default: 9FH)

Termination Current/Pre_Charge Current/Address: 11H (Default: 22H)

Bit	Symbol	Description	REG_RST	WDT_RST	Read/Write	Default			
Termination Current (I _{TERM})									
Bit 7	EOC_CHAR_ISET[3]	1b: 8mA	Y	Y		Offset: 1mA			
Bit 6	EOC_CHAR_ISET[2]	1b: 4mA	Y	Y	Bood/write	Range: 1mA-16mA			
Bit 5	EOC_CHAR_ISET[1]	1b: 2mA	Y	Y	Read/white	Default: 3mA			
Bit 4	EOC_CHAR_ISET[0]	1b: 1mA	Y	Y		(0010b)			
Pre_C	Charge Current (IPRE)								
Bit 3	PRE_CHAR_ISET[3]	1b: 8mA	Y	Y		Offset: 1mA			
Bit 2	PRE_CHAR_ISET[2]	1b: 4mA	Y	Y	Bood/write	Range: 1mA-16mA			
Bit 1	PRE_CHAR_ISET[1]	1b: 2mA	Y	Y	Read/white	Default: 3mA			
Bit 0	PRE_CHAR_ISET[0]	1b: 1mA	Y	Y		(0010b)			

Charge Current Control Register/Address: 12H (Default: 40H)

Bit	Symbol	Description	REG_RST	WDT_RST	Read/Write	Default				
CC C	CC Charge Current Setting									
Bit 7	CHAR_ISET [7]	1b: 256mA	Y	Y						
Bit 6	CHAR_ISET [6]	1b: 128mA	Y	Y		Offset: 0mA				
Bit 5	CHAR_ISET [5]	1b: 64mA	Y	Y		Range: 2mA -510mA				
Bit 4	CHAR_ISET [4]	1b: 32mA	Y	Y	Deed/write	Default:128mA				
Bit 3	CHAR_ISET [3]	1b: 16mA	Y	Y	Read/write	(0100000b)				
Bit 2	CHAR_ISET [2]	1b: 8mA	Y	Y		00000000b=2mA				
Bit 1	CHAR_ISET [1]	1b: 4mA	Y	Y		0000001b=2mA				
Bit 0	CHAR_ISET [0]	1b: 2mA	Y	Y						

Charge Voltage Control Register/Address: 13H (Default: D2H)

Bit	Symbol	Description	REG_RST	WDT_RST	Read/Write	Default		
Pre_Charge Threshold								
Bit 7	PRE_CHAR_VSET	0b: 2.8V	Y Y		Read/write	3.0V (1b)		
Batter	y Regulation Voltage	10: 3.00						
Bit 6	BATREG_VSET[6]	1b: 467.2mV	Y	Y				
Bit 5	BATREG_VSET[5]	1b: 233.6mV	Y	Y		Offset: 3.60V		
Bit 4	BATREG_VSET[4]	1b: 116.8mV	Y	Y		Range:		
Bit 3	BATREG_VSET[3]	1b: 58.4mV	Y	Y	Read/write	$3.000 \sim 4.52710$		
Bit 2	BATREG_VSET[2]	1b: 29.2mV	Y	Y		(1010010b)		
Bit 1	BATREG_VSET[1]	1b: 14.6mV	Y	Y		(10100100)		
Bit 0	BATREG_VSET[0]	1b: 7.3mV	Y	Y		Ciamp to 4.527 TV		

Charge Configuration/Address: 14H (Default:84H)

Bit	Symbol	Description	REG_RST	WDT_RST	Read/Write	Default				
Batter	y Recharge Threshold (b	elow BATREG	S_VSET)							
Bit 7	BAT_RCHAR_VSET	0b: 100mV 1b: 200mV	Y	Y	Read/write	200mV (1b)				
Top Of	Top Off Time (T _{TOP_OFF})									
Bit 6	TOP_OFF_TIME [3]	1b: 40min	Y	Y		Offset:0min(disable) Range: 0min-75min				
Bit 5	TOP_OFF_TIME [2]	1b: 20min	Y	Y	Dood/write					
Bit 4	TOP_OFF_TIME [1]	1b: 10min	Y	Y	Read/write					
Bit 3	TOP_OFF_TIME [0]	1b: 5min	Y	Y		Delault.onnin(0000b)				
Batter	y UVLO Threshold									
Bit 2	BAT_UVLO_SET[2]	1b: 360mV	Y	Y		Offset: 2.4V				
Bit 1	BAT_UVLO_SET[1]	1b: 180mV	Y	Y	Read/write	Range: 2.4V-3.03V				
Bit 0	BAT_UVLO_SET[0]	1b: 90mV	Y	Y		Default:2.76V (100b)				

SYS	Voltage/Discharge	e Current Lii	mit/Addres	s: 15H (Def	ault: 89H)	
Dit	Symbol	Description	DEC DET	WOT DOT	Pood/M/rito	

Bit	Symbol	Description	REG_RST	WDT_RST	Read/Write	Default			
Syste	m Output Voltage Regu	lation (Vsys_red	3)						
Bit 7	SYS_VSET[3]	1b: 400mV	Y	Ν		Offset: 4.2V			
Bit 6	SYS_VSET[2]	1b: 200mV	Y	Ν	Deed/write	Range: 4.2V-4.95V			
Bit 5	SYS_VSET[1]	1b: 100mV	Y	Ν	Read/white	Default: 4.6V			
Bit 4	SYS_VSET[0]	1b: 50mV	Y	Ν		(1000b)			
BAT to SYS Discharge Current Limit (IDISCHG)									
Note:	Should not Exceed Ma	ax P₀ to Use							
Bit 3	BATTOSYS_ISET [3]	1b:1600mA	Y	Y		Offset: 200mA			
Bit 2	BATTOSYS_ISET [2]	1b: 800mA	Y	Y		Range:400mA~3.2A Valid range: 0001b			
Bit 1	BATTOSYS_ISET [1]	1b: 400mA	Y	Y	Read/write	~1111b 0000b=0001b=400mA			
Bit 0	BATTOSYS_ISET [0]	1b: 200mA	Y	Y		Default: 2A (1001b)			

Reserved Register/Address: 16H (Default: 00H)

Bit	Symbol	Description	REG_RST	WDT_RST	Read/Write	Default
Bit 7	Reserved		NA	NA	Read only	0
Bit 6	Reserved		NA	NA	Read only	0
Bit 5	Reserved		NA	NA	Read only	0
Bit 4	Reserved		NA	NA	Read only	0
Bit 3	Reserved		NA	NA	Read only	0
Bit 2	Reserved		NA	NA	Read only	0
Bit 1	Reserved		NA	NA	Read only	0
Bit 0	Reserved		NA	NA	Read only	0

Bit	Symbol	Description	REG_RST	WDT_RST	Read/Write	Default			
	Bit 7 EN_TERM 0b: Disable Y Y Read/write	0b: Disable	V	V	Pood/write	Termination setting			
		Read/write	Enabled (1b)						
TERM	TERM_TMR:								
When TERM_TMR is enabled, the IC will not suspend the charge current after the charge termination									
Dit 6		0b: Disable	V	Y	Read/write	Termination timer control.			
		1b: Enable	T			Disable (0b)			
UCP									
Bit 5	UCP[5]	480mA	Y	Y					
Bit 4	UCP[4]	240mA	Y	Y					
Bit 3	UCP[3]	120mA	Y	Y	Dood/write	Olisel: 30mA			
Bit 2	UCP[2]	60mA	Y	Y	Read/write	Range. Soma - 600mA			
Bit 1	UCP[1]	30mA	Y	Y					
Bit 0	UCP [0]	15mA	Y	Y					

Termination Setting/UCP/Address: 17H (Default: 9FH)

Thermal/NTC Configuration Register/Address: 18H (Default: F2H)

Bit	Symbol	Description	REG_RST	WDT_RST	Read/Write	Default			
Therm	Thermal Configuration								
	EN_THERM	0b: Disable	V	V	Bood/write	Enable Thermal loop			
	AL	1b: Enable	T	T	Read/white	Enabled (1b)			
Bit 6	T	00b: 60°C	V	V					
DILO	IJEG[I]	01b: 80°C		1	Dead/write	100°C (11b)			
Bit 5	Bit 5 T _{JEG} [0]	10b: 100°C	V	~	Read/white	120 C (11b)			
ыгэ		11b: 120°C	I	I					
NTC C	NTC Configuration								
		0b: Disable	Y	V	Deed/write	Enable (1b)			
DIL 4	NIC_EN	1b: Enable		Y	Read/white	Enable (Tb)			
D:+ 0	PCB_OTP_	0b: Enable	V	V	Deed/write	Enable (0b)			
ыгэ	EN	1b: Disable	ř	ř	Read/white	Enable (Ob)			
D'1 0	D (4)	00b: 0.05%	V	Ň		The Time period is Fe			
BIT 2	DNTC[1]	01b: 5%	Y	Y	Deed/wite				
D '' 4	D (0)	10b: 10%		X	Read/write	$(0.2\Pi Z)$			
Bit 1	Dntc[0]	11b: 100%	Y	Y		Delault. 5% (UTD)			
Bit 0	Reserved		NA	NA	Read only	Default: 0b			

JEITA Configuration Register/Address: 19H (Default: B5H)

Bit	Symbol	Description	REG_RST	WDT_RST	Read/Write	Default
CC cu	rrent setting	during T2(Cool) tempe	rature range, a	as percentage	of ICC	
Bit 7	JEITA_T2	00b : No Charge	v	V		
	_ISET[1]	01b : 20% of ICC	I	•	Read/write	Default:50% of ICC in
Bit 6	JEITA_T2	10b: 50% of ICC	v	V	Read/write	NTC COOL (10b)
DILO	_ISET[0]	11b: 100% of ICC	I	1		
CV ch	arge voltage	setting during T3(warn	n) temperature	range.		
	JEITA T3	00b: No Charge				Default: VBAT_REG-100mV in
Bit 5 VSE	VSET[1]	01b: V _{BAT_REG}	Y	Y		
		10b: Vbat_reg			Read/write	
Bit 4	JEITA T3	-50mV		Y	nead, write	NTC WARM (11b)
	VSET[0]	11b: V _{BAT_REG}	Y			
		-100mV				
T2(Co	ol) temperatu	ıre				
D'1 0	JEITA_T2	00b: 1.145V(5°C)	V	X		
BIT 3	_TEMP[1]	01b: 0.921V (10°C)	Y	Y		
	ΙΕΙΤΔ Τ2	10b: 0.746V (15°C)			Read/write	Default:10°C (01b)
Bit 2	_TEMP[0]	11b: 0.609V (20°C)	Y	Y		
T3(wa	rm) temperat	ure				
	JEITA_T3	00b: 0.288V (40°C)	V	N		Default:45°C (01b)
BIT 1	_TEMP[1]	01b: 0.242V (45°C)	Y	Y		
Bit 0	JEITA_T3	10b : 0.205V (50°C)	V	N	rceau/write	
	_TEMP[0]	11b: 0.174V (55°C)	Y	Y		

Bit	Symbol	Description	REG_RST	WDT_RST	Read/Write	Default
Bit 7	TREBOOT_DLY[1]	00b: 0s	Y	Y	Read/write	
		01b: 1s				Enter Reboot mode
Bit 6	TREBOOT_DLY[0]	10b: 2s	Y	Y	Read/write	deglitch time
		11b: 4s				Default: 0s (00b)
Bit 5	Reserved		Y	Y	Read/write	
Rit 4		00b: 0s	Y	N	Read/write	Enter objecting mode
		01b: 1s	-		rieda, write	
Bit 3		10b: 2s	Y	Ν	Read/write	Default: 1c (01b)
Dit O		11b: 4s	1			
Bit 2	TRET DEL[1]	00b: 6s	V	v		Dull INT low to report
		01b: 12s	-		Bood/write	
Rit 1		10b: 16s	v	v	Read/write	System.
		11b: 20s	I			Delault. Tos (TOD)
						VSYS Keep Low Level
Dit 0	–	0b: 2s	V	X	Dead/write	Time during system
Bit 0	RST_DUR	1b: 4s	Ť	Y	Read/Write	reset.
						Default: 2s (0b)

SYS Control_1 Register/Address: 1AH (Default: 0CH)

SYS Control_2 Register/Address: 1BH (Default: ABH)

Bit	Symbol	Description	REG_RST	WDT_RST	Read/Write	Default				
EN_IN	IT_PULSE: Do	not affect INT	existing shipp	ing mode and	system reset fu	unction.				
Bit 7	EN_INT_P ULSE	0b: Disable 1b: Enable	Y	Y	Read/write	Default: enable (1)				
TINT_EX	TINT_EX_SHIPPING_DEL : INT Port Low Level Time Setting for Exit Shipmode									
Bit 6	TINT_EX_SHIPP	0b: 2s 1b: 100ms	Y	Y	Read/write	Default: 2s (0)				
Bit 5	EN_BATO CP	0b: Disable 1b: Enable	Y	N	Read/write	Default: enable (1)				
EN_R	EN_RC: Period detection for reserve current online detection (ONLY WORKS IN VIN < 0.7V and keep 50ms)									
RCD o (1) EN	RCD detection periodically (100ms): (1) EN_RC is not enabled, an out-of-box RCD detection will occur.									
(2) EN	(2) EN_After RC is enabled, during the first automatic RCD out of box detection, an abnormal power down in									
box st	tate is detected	d, and then the	e RCD detecti	ion is performe	ed at a 100ms	cycle. If the abnormal power				
down	in box state p	ersists, the 10	0ms cycle def	tection is conti	nued; If not, e	xit the abnormal power down				
detect	ion in the box f	for a 100ms cy	cle and clear t	he EN_ RC。						
(3) EN	I_RC is enable	ed, if the box o	ut state is fou	nd during the	first automatic	RCD box out detection, cycle				
detect	ion will not be	started,EN_RC	will not auton	natically be cle	ared.					
Bit 4	EN_RC	0b: Disable 1b: Enable	Y	Y	Read/write	Default: disable (0)				
Bit 3	EN_TIMER	0b:Disable 1b:Enable	Y	Y	Read/write	Safety timer setting. Default: Enable timer (1)				
Bit 2	Тснс[1]	00b: 3hrs 01b: 5hrs	Y	Y		CC charge safety timer				
Bit 1	Тснс[0]	10b: 8hrs 11b: 12hrs	Y	Y	Read/write	Default: 5hrs(01b)				
EN_TI	MR_2X: 2X ex	tended safety t	imer during Pl	PM and therma	al regulation					
Bit 0	EN_TMR_2 X	0b:Disable 1b:Enable	Y	Y	Read/write	Default: enable (1b)				

Bit	Symbol	Description	REG_RST	WDT_RST	Read/Write	Default		
EN_L	DOP_INT : Ena	able loop interr	upt when inter	rupt status is n	ot cleared			
Bit 7	EN_LOOP	0b: Disable	v	v	Read/write	Default: Enable (1b)		
	_INT	1b: Enable	I	I	Read/write			
Dit 6		0b: Disable	V	V	Bood/write	Default:		
DILO		1b: Enable	T	T	Read/write	Enable Heartbeat (1b)		
Dit 5	EN_ONLIN	0b: Disable	V	V	Bood/write	Default:		
DIUD	E_DET	1b: Enable	T	T	Read/write	Enable Online Det (1b)		
V _{BAT_L}	V _{BAT_LOW} : Only works for communication battery voltage							
Bit 4	Vbat_low[1]	00: 3.2V;	V	V	Deed/wite			
		01: 3.3V;	Y	Y	Read/write	$D_{ofoult} (2.4)/(10h)$		
D:4-0	۱ <u>۷</u> ۲01	10: 3.4V;	V	Y	Deed/wite			
BIT 3	VBAT_LOW[U]	11: 3.5V	Ŷ		Read/write			
T _{WD} : d	isable watchdo	og works for bo	th charging ar	nd discharge				
Bit 2	Тмр[1]	00: Disable	V	N				
	1 00[1]	01: 40s	I		Bood/write	Default: 160a (11b)		
Rit 1		10: 80s	V	Ν	Read/write	Delault. 1005 (11b)		
Dit i	IWD[O]	11: 160s	I					
EN_W	EN_WD_DISCHG : Enable watchdog control in discharge mode.							
	EN_WD_DI	0b:Disable	Ň	N	Deed/witt			
BILO	SCHG	1b:Enable	Ŷ	N	read/write	Default: Disable (0)		

SYS Control_3 Register/Address: 1CH (Default: F6H)

Bit	Symbol	Description	REG_RST	WDT_RST	Read/Write	Default
Bit 7	EN_HIZ	0b: Disable 1b: Enable	Y	Y	Read/write	Default: Disable (0b)
Bit 6	CEB	0b: Enable 1b: Disable	Y	Y	Read/write	Default: Charge Disable(1b)
Bit 5	EN_DRC	0b: Disable 1b: Enable	Y	Y	Read/write	Control the Direct mode Default: Disable (0b)
Bit 4	EN_SHIPPI NG_MODE	0b: Enable 1b: Turn off	Y	N	Read/write	Default: Enable (0b) (BATFET ON)
Bit 3	C_Q1_2X_ EN	0b: Disable 1b: Enable	Y	Y	Read/write	Both offset and step double Default: Disable (0b)
Bit 2	C_BATFET _2X_EN	0b: Disable 1b: Enable	Y	Y	Read/write	Both offset and step double Default: Disable (0b)
Bit 1	VIN_DPM_ EN	0b: Disable 1b: Enable	Y	Y	Read/write	Default: Enable (1)
Bit 0	REG_RST	0: Keep current setting 1: Reset (then reset to 0)	Y	Ν	Read/write	Default: Keep current setting(0b)

Enable & Reset Register/Address: 1DH (Default: 42H)

UART Register/Address: 20H (Default: 00H)

Bit	Symbol	Description	REG_RST	WDT_RST	Read/Write	Default
Bit 7	FORCE_U	0: Not turn on UART 1:Turn on the	Y	Y	Read/write	Force on UART channel if VIN <uvlo.< td=""></uvlo.<>
		UART (then reset to 0)				Default: Disable (0b)
Bit 6	FORCE_U ART_OFF	0: Not turn off UART 1: Turn off the UART (then reset to 0)	Y	Y	Read/write	Force off UART channel. Default: Disable (0b)
Bit 5	Reserved		NA	NA	Read only	
Bit 4	Reserved		NA	NA	Read only	
Bit 3	Reserved		NA	NA	Read only	Default: 000000b
Bit 2	Reserved		NA	NA	Read only	
Bit 1	Reserved		NA	NA	Read only	
Bit 0	Reserved		NA	NA	Read only	

COMM_TX Register/Address: 21H (Default: 00H)

Bit	Symbol	Description	REG_RST	WDT_RST	Read/Write	Default
Bit 7	Reserved		NA	NA	Read only	
Bit 6	Reserved		NA	NA	Read only	Default:
Bit 5	Reserved		NA	NA	Read only	0000b
Bit 4	Reserved		NA	NA	Read only	
TX_C	TRL: Commu	nication instructions send out bi	t. If no ACK is	required within	10ms, the inst	truction will be
send a	again; After 3	times retry, this bit will be also c	leared and rep	ort this commu	unication failure	e event.
Bit 3		0000b/0001b: Reserved	Y	Y		
	-	0100b: NORMAL PACKAGE		•		
Bit 2		0101b: PRECHARGE	Y	Y		
		PACKAGE				Default:
Bit 1	IX_CIRL	0110b: UART REQUESET	Y	Y	Read/write	0000b
		PACKAGE				
Rit O		(0010b, 0011b, 0111b-1111b:	v	V		
		Customize PACKAGE)	Ĭ	T		

COMM_RX Register/Address: 22H (Default: 00H)

Bit	Symbol	Description	REG_RST	WDT_RST	Read/Write	Default
Bit 7	Reserved		NA	NA	Read only	
Bit 6	Reserved		NA	NA	Read only	Default:
Bit 5	Reserved		NA	NA	Read only	0000b
Bit 4	Reserved		NA	NA	Read only	
Dit 2		0000/0001: Reserved	NΙΛ	NΙΛ		
DIL 3		0100: receive SD	NA NA	NA NA		
Bit 2		0101: receive reboot	NA	NA		
	ον στλτ	0110: receive UART			Pood only	Default:
Bit 1		REQUEST	ΝΔ	ΝΔ	Read only	0000b
		0111-1111: OTHERS				
D:+ 0	1	0010b,0011b,0111b-1111b:	NIA	NIA]	
DILU		Customize PACKAGE	INA	INA		

STAT0 Register/Address: 30H (Default: 00H)

Bit	Symbol	Description	REG_RST	WDT_RST	Read/Write	Default
Bit 7	Reserved		NA	NA	Read only	Default: 0b
Bit 6		00b: Not charging 01b: precharge	NA	NA	Read only	
Bit 5	CHG_STAT	10b:CC Charge 11b: Charge done	NA	NA	Read only	Not charging (000)
Bit 4	PPM_STAT	0b: No PPM 1b: In PPM	NA	NA	Read only	No PPM (0b)
Bit 3	PG_STAT	0b: Power fail 1b: Power good	NA	NA	Read only	Power good (0b)
Bit 2	THERMAL _STAT	0b: No thermal regulation 1b: In thermal regulation	NA	NA	Read only	No thermal regulation (0b)
Bit 1	DIRECT_M ODE_STAT	0b: Not in direct mode 1b: In direct mode	NA	NA	Read only	Not in direct mode (0b)
Bit 0	Q1_STAT	0b: OFF 1b: ON	NA	NA	Read only	OFF (0b)

STAT1 Register/Address: 31H (Default: 0AH)

Bit	Symbol	Description	REG_RST	WDT_RST	Read/Write	Default
Bit 7	WD_STA T	0b: Normal 1b: Watchdog timer out	NA	NA	Read only	0b: Normal
Bit 6	UART_ST AT	0b: Not in UART mode 1b: In UART mode	NA	NA	Read only	0: Not in UART mode
Bit 5		00: Earphone out of the box (requires a second handshake after re powering on) 01: The earphone is	NA	NA	Read only	
Bit 4	PLUG_ST AT	abnormally powered off and in the box (it needs to send a handshake again after being powered on again) 10: Illegal power supply (requires a handshake again after powering on): still use Linear charger to charge. 11: Normally in the box (no handshake required after re powering on)	NA	NA	Read only	00b: Out of the box (handshake required after re powering on)
BAT_S otherw	SYS_PRE: th vise,not reflect	e reading value is effective wh cted the real value when readir	en V _{∪V_IN} ≪V _{IN} ng.	$<$ Vin_ovp;		
Bit 3	BAT_SYS _PRE	1b: VBAT lower than system pre voltage (3.2V-3.5V) 0b: VBAT higher than system pre voltage (3.2V-3.5V)	NA	NA	Read only	1b: VBAT lower than system pre voltage (3.2V-3.5V)
Bit 2		000:Cold 001:Cool	NA	NA	Read only	
Bit 1	NTC_STA T	011:Warm 100:Hot	NA	NA	Read only	010b: NTC normal
Bit 0		101:PCB OTP 111:NTC disable	NA	NA	Read only	

STAT2 Register/Address: 32H (Default: 00H)

Bit	Symbol	Description	REG_RST	WDT_RST	Read/Write	Default
Bit 7	VIN OVP/UVLO	0b: VIN is good 1b: VIN is OVP/UVLO	NA	NA	Read only	0b: VIN is good
Bit 6	TSD	0: IC not in thermal shutdown 1: IC in thermal shutdown	NA	NA	Read only	0b: IC not in thermal shutdown
Bit 5	SAFETY_TI MER_OUT	0:No Safety timer out 1:Safety timer out	NA	NA	Read only	0b: No Safety timer out
Bit 4	UCP_STAT	0: I _{BAT} > I _{UCP} 1: Ibat< Iucp	NA	NA	Read only	0b: I _{BAT} > I _{UCP} (Only works in direct mode)
Bit 3	TOPOFF_A CTIVE	0: Top off timer not counting 1: Top off timer counting	NA	NA	Read only	0b: Top off timer not counting
Bit 2	TX_STATUS	0: Not Busy 1:Busy Is the LC in the state of busy TX serial communication transmission (including normal sending and ACK reply)	NA	NA	Read only	Default: 0b
Bit 1	CC_LOOP	0: BATFET not in CC charger mode 1: BATFET in CC loop during charger mode	NA	NA	Read only	Default: 0b
Bit 0	CV_LOOP	0: BATFET not in charger mode 1: BATFET in CV loop during charger mode	NA	NA	Read only	Default: 0b

Bit	Symbol	Description	REG_RST	WDT_RST	Read/Write	Default
Bit 7	CHARGING STATUS_INT	0b: not trigger 1b: Charge state change triggered	NA	NA	RW1C	0b: not trigger
Bit 6	EOC_INT	0b: not trigger 1b: End of Charge triggered	NA	NA	RW1C	0b: not trigger
Bit 5	PPM_INT	0b: not trigger 1b: triggered	NA	NA	RW1C	0b: not trigger
Bit 4	PG_INT	0b: not trigger 1b: triggered	NA	NA	RW1C	0b: not trigger
Bit 3	THERMAL_STA T_INT	0b: not trigger 1b: triggered	NA	NA	RW1C	0b: not trigger
Bit 2	DRC_STAT_INT	0b: not trigger 1b: Exit Direct charge state triggered	NA	NA	RW1C	0b: not trigger
Bit 1	VINDPM_INT	0b: not trigger 1b: triggered	NA	NA	RW1C	0b: not trigger
Bit 0	TOP_OFF_TIM ER_INT	0b: not trigger 1b: Start to count the TOP OFF time triggered	NA	NA	RW1C	0b: not trigger

INT0 Register/Address: 40H (Default: 00H)

Bit	Symbol	Description	REG_RST	WDT_RST	Read/Write	Default
Bit 7	VIN FAULT INT	0b: not trigger	NA	NA	RW1C	0b: not trigger
Bit i		1b: triggered				(OVP or UVLO)
Bit 6	THERMAL SD INT	0b: not trigger	NA	NA	RW1C	0b [.] not trigger
Bit 0		1b: triggered				ob. not inggor
Bit 5	ΒΔΤ ΕΔΙΠΤ ΙΝΤ	0b: not trigger	NΔ	NΔ	RW1C	0b: not trigger
Dit 5		1b: triggered		INA.		(BAT OVP)
	SAFETY_TIMER_	0b: not trigger	NΙΛ	NIA		Ob: pot trigger
DIL 4	OUT_INT	1b: triggered	INA	INA	RWIC	ob. not trigger
						0b: not trigger
Bit 3	NTC FALLET INT	0b: not trigger	NA	NA	RW1C	(NTC
		1b: triggered				COLD/HOT,
						PCB OTP)
Bit 2	DRC_LIN_IBAT_CU	0b: not trigger	NΔ	NΔ	BW1C	0b: not trigger
DICZ	RRENT_LIMIT_INT	1b: triggered			IWIO	ob. not trigger
Bit 1		0b: not trigger	NΔ	NΔ	BW1C	0b: not trigger
DILI		1b: triggered				ob. not trigger
						0b: not trigger
		0b: not trigger				(Interruption of
Bit 0	DRC_RCP_INT	1b: triggorod	NA	NA	RW1C	current reversal
		ib. linggered				in direct
						charging mode)

INT1 Register/Address: 41H (Default: 00H)

INT2 Register/Address: 42H (Default: 00H)

Bit	Symbol	Description	REG_RST	WDT_RST	Read/Write	Default
						0b: not trigger
						(Power path
Bit 7	PWR_2_COMM_I	0b: not trigger	ΝΔ	ΝΔ	RW1C	transfer to
	NT	1b: triggered	INA			UART
						channel
						done)
						0b: not trigger
	COMM_2_PWR_I NT	0b: not trigger	NA	NA	RW1C	(UART
Bit 6		1b: triggered				transfer to
		no. alggered				power path
						done)
Bit 5	ILLEGAL_POWE	0b: not trigger	NA	NA	RW1C	0b: not trigger
	R_INT	1b: triggered				
Bit 4	PLUG OUT INT	0b: not trigger	NA	NA	RW1C	0b: not trigger
		1b: triggered				
Bit 3	PLUG IN INT	0b: not trigger	NA	NA	RW1C	0b: not trigger
		1b: triggered				
		0b: not trigger				
		1b: BAT voltage				
	BAT SYS PRE I	arrived to setting				
Bit 2	NT – – –	value triggered	NA	NA	RW1C	0b: not trigger
		(BAT higher than				
		system pre voltage				
		(3.2V-3.5V))				
Bit 1	NIC_SIAI_CHA	0b: not trigger	NA	NA	RW1C	0b: not trigger
	NGE_INT	1b: triggered				
Bit 0	WD_FAULT_INT	Ub: not trigger	NA	NA	RW1C	0b: not trigger
Die O		1b: triggered				

INT3 Register/Address: 43H (Default: 00H)

Bit	Symbol	Description	REG_RST	WDT_RST	Read/Write	Default
Bit 7	Q1_ON_INT	0b: not trigger 1b: triggered	NA	NA	RW1C	0b: not trigger
Bit 6	Q1_OFF_INT	0b: not trigger 1b: triggered	NA	NA	RW1C	0b: not trigger
Bit 5	RCV_NACK_IN T	0b: not trigger 1b: triggered	NA	NA	RW1C	0b: not trigger (Do not receive a ACK) In a communication conflict scenario, the BuckBoost (ET9580) response takes precedence, and ET9563 packets are directly discarded, but NO ACK INT is reported
Bit 4	RCV_ACK_INT	0b: not trigger 1b: triggered	NA	NA	RW1C	0b: not trigger (Receive a ACK)
Bit 3	RCV_CUSTOMI ZE_INT	0b: not trigger 1b: triggered	NA	NA	RW1C	0b: not trigger
Bit 2	RCV_UART_R EQUEST_INT	0b: not trigger 1b: triggered	NA	NA	RW1C	0b: not trigger
Bit 1	RCV_SD_INT	0b: not trigger 1b: triggered	NA	NA	RW1C	0b: not trigger
Bit 0	RCV_RESET_I NT	0b: not trigger 1b: triggered	NA	NA	RW1C	0b: not trigger

INT4 Register/Address: 44H (Default: 00H)

Bit	Symbol	Description	REG_RST	WDT_RST	Read/Write	Default
Bit 7	MIN_UCP_INT	0b: not trigger 1b: triggered	NA	NA	RW1C	0b: not trigger
Bit 6	ABNORMAL_PLUG_I N_INT	0b: not trigger 1b: triggered	NA	NA	RW1C	0b: not trigger
Bit 5	Reserved		NA	NA	Read only	Default:0b
Bit 4	Reserved		NA	NA	Read only	Default:0b
Bit 3	Reserved		NA	NA	Read only	Default:0b
Bit 2	Reserved		NA	NA	Read only	Default:0b
Bit 1	Reserved		NA	NA	Read only	Default:0b
Bit 0	Reserved		NA	NA	Read only	Default:0b

MASK0 Register/Address: 50H (Default: 00H)

Bit	Symbol	Description	REG_RST	WDT_RST	Read/Write	Default
Bit 7	CHARGING_STAT US_INT_M	0b: not mask for INT pulse 1b: mask	Y	Y	Read/write	0b: not mask for INT pulse
Bit 6	EOC_INT_M	0b: not mask for INT pulse 1b: mask	Y	Y	Read/write	0b: not mask for INT pulse
Bit 5	PPM_INT_M	0b: not mask for INT pulse 1b: mask	Y	Y	Read/write	0b: not mask for INT pulse
Bit 4	PG_INT_M	0b: not mask for INT pulse 1b: mask	Y	Y	Read/write	0b: not mask for INT pulse
Bit 3	THERMAL_STAT_I NT_M	0b: not mask for INT pulse 1b: mask	Y	Y	Read/write	0b: not mask for INT pulse
Bit 2	DRC_STAT_INT_M	0b: not mask for INT pulse 1b: mask	Y	Y	Read/write	0b: not mask for INT pulse
Bit 1	VINDPM_INT_M	0b: not mask for INT pulse 1b: mask	Y	Y	Read/write	0b: not mask for INT pulse
Bit 0	TOP_OFF_TIMER _INT_M	0b: not mask for INT pulse 1b: mask	Y	Y	Read/write	0b: not mask for INT pulse

MASK1 Register/Address: 51H (Default: 00H)

Bit	Symbol	Description	REG_RST	WDT_RST	Read/Write	Default
Bit 7	VIN_FAULT_INT_ M	0b: not mask for INT pulse 1b: mask	Y	Y	Read/write	0b: not mask for INT pulse
Bit 6	THERMAL_SD_IN T_M	0b: not mask for INT pulse 1b: mask	Y	Y	Read/write	0b: not mask for INT pulse
Bit 5	BAT_FAULT_INT_ M	0b: not mask for INT pulse 1b: mask	Y	Y	Read/write	0b: not mask for INT pulse
Bit 4	SAFTER_TIMER_ OUT_INT_M	0b: not mask for INT pulse 1b: mask	Υ	Y	Read/write	0b: not mask for INT pulse
Bit 3	NTC_FAULT_INT_ M	0b: not mask for INT pulse 1b: mask	Y	Y	Read/write	0b: not mask for INT pulse
Bit 2	DRC_LIN_IBAT_C URRENT_LIMIT_I NT_M	0b: not mask for INT pulse 1b: mask	Y	Y	Read/write	0b: not mask for INT pulse
Bit 1	DRC_UC_INT_M	0b: not mask for INT pulse 1b: mask	Y	Y	Read/write	0b: not mask for INT pulse
Bit 0	DRC_RCP_INT_M	0b: not mask for INT pulse 1b: mask	Y	Y	Read/write	0b: not mask for INT pulse

MASK2 Register/Address: 52H (Default: 00H)

Bit	Symbol	Description	REG_RST	WDT_RST	Read/Write	Default
Bit 7	PWR_2_COMM_IN T_M	0b: not mask for INT pulse 1b: mask	Y	Y	Read/write	0b: not mask for INT pulse
Bit 6	COMM_2_PWR_IN T_M	0b: not mask for INT pulse 1b: mask	Y	Y	Read/write	0b: not mask for INT pulse
Bit 5	ILLEGAL_POWER _INT_M	0b: not mask for INT pulse 1b: mask	Y	Y	Read/write	0b: not mask for INT pulse
Bit 4	PLUG_OUT_INT_ M	0b: not mask for INT pulse 1b: mask	Y	Y	Read/write	0b: not mask for INT pulse
Bit 3	PLUG_IN_INT_M	0b: not mask for INT pulse 1b: mask	Y	Y	Read/write	0b: not mask for INT pulse
Bit 2	BAT_SYS_PRE_IN T_M	0b: not mask for INT pulse 1b: mask	Y	Y	Read/write	0b: not mask for INT pulse
Bit 1	NTC_STAT_CHAR GE_INT_M	0b: not mask for INT pulse 1b: mask	Y	Y	Read/write	0b: not mask for INT pulse
Bit 0	WD_FAULT_INT_ M	0b: not mask for INT pulse 1b: mask	Y	Y	Read/write	0b: not mask for INT pulse

MASK3 Register/Address: 53H (Default: 00H)

Bit	Symbol	Description	REG_RST	WDT_RST	Read/Write	Default
Bit 7	Q1_ON_INT_M	0b: not mask for INT pulse 1b: mask	Y	Y	Read/write	0b: not mask for INT pulse
Bit 6	Q1_OFF_INT_M	0b: not mask for INT pulse 1b: mask	Y	Y	Read/write	0b: not mask for INT pulse
Bit 5	RCV_NACK_INT_ M	0b: not mask for INT pulse 1b: mask	Y	Y	Read/write	0b: not mask for INT pulse
Bit 4	RCV_ACK_INT_M	0b: not mask for INT pulse 1b: mask	Y	Y	Read/write	0b: not mask for INT pulse
Bit 3	RCV_CUSTOMIZE _INT_M	0b: not mask for INT pulse 1b: mask	Y	Y	Read/write	0b: not mask for INT pulse
Bit 2	RCV_UART_REQ UEST_INT_M	0b: not mask for INT pulse 1b: mask	Y	Y	Read/write	0b: not mask for INT pulse
Bit 1	RCV_SD_INT_M	0b: not mask for INT pulse 1b: mask	Y	Y	Read/write	0b: not mask for INT pulse
Bit 0	RCV_RESET_INT_ M	0b: not mask for INT pulse 1b: mask	Y	Y	Read/write	0b: not mask for INT pulse

MASK4 Register/Address: 54H (Default: 00H)

Bit	Symbol	Description	REG_RST	WDT_RST	Read/Write	Default
Bit 7	MIN_UCP_INT_M	0b: not mask for INT pulse 1b: mask	Y	Y	Read/write	0b: not mask for INT pulse
Bit 6	ABNORMAL_PLU G_IN_INT_M	0b: not mask for INT pulse 1b: mask	Υ	Y	Read/write	0b: not mask for INT pulse
Bit 5	Reserved		NA	NA	Read only	Default:0b
Bit 4	Reserved		NA	NA	Read only	Default:0b
Bit 3	Reserved		NA	NA	Read only	Default:0b
Bit 2	Reserved		NA	NA	Read only	Default:0b
Bit 1	Reserved		NA	NA	Read only	Default:0b
Bit 0	Reserved		NA	NA	Read only	Default:0b

WD_{-}	RESET	Register/Add	ress: 5AH	(Default: 00H)
----------	-------	---------------------	-----------	----------------

Bit	Symbol	Description	REG_RST	WDT_RST	Read/Write	Default	
Bit 7	Reserved		NA	NA	Read only	Default:0b	
Bit 6	Reserved		NA	NA	Read only	Default:0b	
Bit 5	Reserved		NA	NA	Read only	Default:0b	
Bit 4	Reserved		NA	NA	Read only	Default:0b	
Bit 3	Reserved		NA	NA	Read only	Default:0b	
Bit 2	Reserved		NA	NA	Read only	Default:0b	
Bit 1	Reserved		NA	NA	Read only	Default:0b	
Bit 0	WD_RESET	0: Normal 1:Reset(then reset to 0)	Y	Ν	Read/write	Normal(0b)	

Serial Port Interface (I²C)

Bus Interface

Baseband Processor can transmit data with ET9563 each other through SDA and SCL port. SDA and SCL composite bus interface, and a pull-up resistor to the power supply should be connected.

Data Validity

When the SCL signal is HIGH, the data of SDA port is valid and stable. Only when the SCL signal is low, the level on the SDA port can be changed.

Start (Re-start) and Stop Working Conditions

When the SCL signal is high, SDA signal from high to low represents start or re-start working conditions, while the SCL signal is high, SDA signal from low to high represents stop working conditions.

Byte format

Each byte of data line contains 8 bits, which contains an acknowledge bit. The first data is transmitted MSB.

Acknowledge

During the writing mode, ET9563 will send a low level response signal with one period width to the SDA port. During the reading mode, ET9563 will not send response signal and the host will send a high response signal one period width to the SDA.

Figure 11. I²C write mode

- ACK=Acknowledge
- MSB=Most Significant Bit
- S=Start Conditions RS=Restart Conditions P=Stop Conditions
- Fastest Transmission Speed =400KBITS/S
- Restart: SDA-level turnover as expressed by the dashed line waveform

Chip Address: 00001100b (Writing Register mode)/00001101b (Reading Register Mode)

I²C Writing Command Register Interface Protocol (continuous):

C	hip write address(0CF	1)	Write Reg start addr	ess(00-	5AH)							
0		w 0	A				Reç	J Data				
Start	Chip Address	ack	cmdadr	ack	cmd0	ack	cmd1	ack	 ack	cmdn	ack	Stop/Rs

Figure 12. I²C Writing Command Register(continuous)

- Start=Start Conditions
- Chip address=Write register address =0000110+0(w)b
- ack=Acknowledge
- Write Reg start address byte = cmdadr(REG's 8bit address)
- ack=Acknowledge
- Reg data 0 = cmd0(Command data0)
- ack=Acknowledge
-
- Reg data n =cmdn(Command datan)
- ack=Acknowledge
- Stop/Rs=Stop Condition/Restart Condition

I²C Writing Command Register Interface Protocol (single):

Figure 13. I²C Writing Command Register(single)

- Start=Start Conditions
- Chip address =Write register address=0000110+0(w)b
- ack=Acknowledge
- Write Reg start address byte = cmdadr(REG's8bit address)
- ack=Acknowledge
- Reg data= cmd(Command data)
- ack=Acknowledge
- Stop/Rs=Stop Condition/Restart Condition

I²C Reading Command Register Interface Protocol(continuous)

Figure 14. I²C Reading Command Register

- Start=Start Conditions
- Chip address =Write register address=0000110+0(w)b
- ack=Acknowledge
- Write Reg start address byte = cmdadr(REG's 8bit address)
- ack=Acknowledge
- Restart=Restart condition
- Chip address Read register address=0000110+1(r)b
- ack=Acknowledge
- Dataout=Register data output
- Ack= Acknowledge from Host Device
- Dataout=Register data output
-
- Dataout=Register data output
- nack=No Acknowledge from Host Device
- Stop/Rs=Stop Condition/Restart Condition

I²C Reading Command Register Interface Protocol(single)

Figure 14. I²C Reading Command Register

- Start=Start Conditions
- Chip address =Write register address=0000110+0(w)b
- ack=Acknowledge
- Write Reg start address byte = cmdadr(REG's 8bit address)
- ack=Acknowledge
- Restart=Restart condition
- Chip address Read register address=0000110+1(r)b
- ack=Acknowledge
- Dataout=Register data output
- nack=No Acknowledge from Host Device
- Stop/Rs=Stop Condition/Restart Condition

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Para	meters	Ran	ge	Unit
$V_{\text{IN}}, V_{\text{CAP}}$	VIN,	VCAP	-0.3~	-20	V
Vio	Othe	er Pins	-0.3~	·6.0	V
I _{MAX1}	Maximum Continuou	us Current of IN to BAT	<1.	0	А
I _{MAX2}	Maximum Continuou	is Current of IN to SYS	<1.	0	А
I _{MAX3}	Maximum Continuous	s Current of BAT to SYS	<3.	А	
PD	Power Dissipa	<1.	W		
Tstg	Storage Junct	ion Temperature	-65~	150	°C
T _{JMAX}	Junction 7	Temperature	<+1	50	°C
T _A	Operating Ten	nperature Range	-40~	[.] 85	°C
ΤL	Soldering Terr	perature (reflow)	<+2	60	°C
\/	Electrostatic	Human Body Model	All Pins	1.5	kV
VESD	Discharge Capability	Charged Device Model	All Pins	2.0	kV

Electrical Characteristics

Symbol	Parameters	Conditions	Min	Тур	Max	Unit
Power Supp	bly					
VIN	Input Voltage				20	V
Vin	Input Operation Voltage		3	5	5.5	V
lin1	Supply Current at IN, Charge Enable	V _{IN} =5.5V, I _{CHG} =0A, V _{BAT} =4.3V, I _{SYS} =0A,Charge Enable, NTC Disable		450	550	μA
lin2	Supply Current at IN, Charge Disable	V _{IN} =5.5V, I _{CHG} =0A, I _{SYS} =0A, Charge Disable, V _{BAT} =4.3V, NTC Disable		430	530	μΑ
l _{IN3}	Supply Current at IN, LDO Disable	V _{IN} =5.5V, I _{CHG} =0A, I _{SYS} =0A, LDO Disable, V _{BAT} =4.3V, NTC Disable		300	400	μA
		V _{IN} =0V, I _{SYS} =0A, V _{BAT} =4.35V, NTC Disable		13	16	μA
Ibat	Supply Current at BAT	V _{IN} =0V, I _{SYS} =0A, V _{BAT} =4.35V, NTC Enable, the Current on the External NTC Resistor is not Included		21	26	μΑ
		V _{SYS} =V _{IN} =0V, I _{SYS} =0A, V _{BAT} =4.35V, Disable NTC Function, Disable Watchdog, Disable BAT OCP, Disable INT		1	2	μΑ
		V _{SYS} =V _{IN} =0V, I _{SYS} =0A, V _{BAT} =4.35V, Shipping Mode		0.3	1	μA
V _{IN_OVP}	Input Over-voltage Protect Threshold	Input Rising Threshold	5.85	6.0	6.15	V
	OVP Threshold Hysteresis	Input Voltage Falling		300		mV
V _{UV_IN}	Input Under-voltage Threshold	Input Rising Threshold	2.75	2.9	3.05	V
	UVLO Hysteresis			130		mV
V _{UV_BAT}	Battery Under-voltage Threshold	Battery Voltage Falling Reg01[2:0]=100b	2.6	2.76	2.92	V
	Battery UVLO Range		2.4		3.03	V
	Battery UVLO Hysteresis			200		mV

Unless otherwise noted, typical values are at V_{IN}=5V, V_{BAT}=4V, T_A=25°C.

Electrical Characteristics(Continued)

Symbol	Parameters	Conditions	Min	Тур	Max	Unit
	Battery Over-voltage	Battery Voltage Rising,		130		m\/
V BAI_OVP	Protect Threshold	Higher than VBATREG_VSET		150		IIIV
Power Path	Management			1	1	
Iin_lim	Input Current Limit	Default Reg10[3:0]=1111	450	500	550	mA
	Input Current Limit Range		50		500	mA
$V_{\text{IN}_{\text{REG}}}$	Input Voltage Regulation Threshold	Default Reg10[7:4]=1001	4.45	4.60	4.75	V
	Input Voltage Regulation Range		3.88		5.08	V
Vsys_reg	System Output Voltage	V _{IN} =5.5V, I _{SYS} =10mA, I _{CHG} =0A Reg15[4:7]=1000b, Default	4.50	4.60	4.70	V
	System Output Voltage Range		4.2		4.95	V
Vsys	System Output	BAT Discharge Mode, V _{BAT} =3.7V, I _{BAT} =100mA	3.6			V
	Voltage	VIN <vuv_in and="" td="" vbat<vuv_bat<=""><td></td><td>0</td><td></td><td>V</td></vuv_in>		0		V
Ron_sys	IN to SYS Switch on Resistance	Vsys=4.6V, Isys=100mA		150	200	mΩ
Ron_bat	BAT to SYS Switch on Resistance	V _{IN} <2V, V _{BAT} =3.5V, I _{SYS} =100mA		100	150	mΩ
	BAT to SYS Current Limit	Reg15[3:0]=1001b	1700	2000 ⁽¹⁾	2300	mA
IBAI_MAX	BAT to SYS Current Limit Range	Not Exceed Max P _D	400		3200 ⁽¹⁾	mA
Ibat_lek	BAT to SYS Leakage Current	V _{BAT} =4.5V, V _{IN} =V _{SYS} =0V, BAT to SYS Close			1	μA
Isys_lek	SYS to BAT Leakage Current	V _{SYS} =5.0V, V _{IN} =4.5V, V _{BAT} =0V			1	μA
Tint	BAT Discharge	INT Pull-low Lasting Time to Turn Off the Battery Discharge Function (Default)		16		S
T IN I	by INT	Battery MOSFET Lasts for the Off Time Duration before Auto-on (Default)		2		S

Unless otherwise noted, typical values are at V_{IN}=5V, V_{BAT}=4V, T_A=25°C.

Electrical Characteristics(Continued)

Symbol	Parameters	Conditions	Min	Тур	Max	Unit	
Battery Charger							
Vbat_reg	Battery Voltage	Programmed by I ² C	3.60		4 507		
	Regulation Range	V _{SYS_REG} >V _{BAT_REG} +200mV			4.527	V	
Vbat	Default Battery	Reg13[6:0]-1010010b	4.179	4.200	4.221	V	
	Regulation Voltage	Neg15[0.0]=10100100					
	Battery Charge	VIN=5V VRAT=3.8V Sten=2mA	2		510	mA	
	Current Range		2		010	11// \	
	Default Charge	V_{IN} =5V, V_{BAT} =3.8V	121	128	135	mA	
Сно	Current	Reg12[7:0]=01000000b					
10110		V_{IN} =5V, V_{BAT} =3.8V	60	64	68	mA	
	Charge Current	Reg12[7:0]=00100000b		-			
	- 0 -	V _{IN} =5V, V _{BAT} =3.8V	1.7	2	2.3	mA	
		Reg12[7:0]=00000000b					
	Charging Current	Junction Temperature					
T_{Fold}	Thermal Foldback	Regulation		120 (1)		°C	
	Threshold	Reg18[6:5]=11b					
	Precharge Range	Programmed Range	1		16	mA	
PRF		Reg11H[3:0]					
	Precharge Current	ITC_SETTING=2mA	1.7	2	2.3	mA	
	ITC_SETTING=16mA		15	16	17	mA	
	End of Charge	Programmed Range	1		16	mA	
IFOC.	Current Range	Reg11H[7:4]					
.200	End of Charge Current	I _{EOC_SETTING} =2mA	1	2	3	mA	
		Ieoc_setting=16mA	14	16	18	mA	
Vdre	Precharge	V _{BAT} Rising set 3.0V	2.8	3.0	3.2	V	
	Threshold Voltage						
VPRE HYS	Precharge Threshold			60		mV	
V FRÉ_ 113	Voltage Hysteresis						
VRECHG	Recharge Threshold	Reg14[7]=0b	60	100	140	mV	
	Below VBAT_REG	Reg14[7]=1b	150	200	250	mV	
IUCP	Low Current	Programmed Range	30				
	Protection Range in	Reg17H[4:0]			600	mA	
	Direct Charge Mode						
	Low Current Protection	IUCP_SETTING=90mA	65	90	110	mA	

Unless otherwise noted, typical values are at V_{IN}=5V, V_{BAT}=4V, T_A=25°C.

Electrical Characteristics(Continued)

Symbol	Parameters	Conditions	Min	Тур	Мах	Unit		
Thermal Protection								
Tsd	Thermal Shutdown Rising Threshold			150 ⁽¹⁾		°C		
Tsd_hys	OTP Threshold Hysteresis	Threshold 20 ⁽¹⁾			°C			
Ιντς	NTC Output Current		48	50	52	uA		
Vcold	NTC Cold Protection Threshold	JEITA_T1_TEMP	1.244	1.294	1.344	V		
Vcool	NTC Cool Protection Threshold	JEITA_T2_TEMP, Reg19H[3:2]=01(Default)	0.89	0.921	0.95	V		
Vwarm	NTC Warm Protection Threshold	JEITA_T3_TEMP, Reg19H[1:0]=01(Default)	0.23	0.242	0.254	V		
Vнот	NTC Hot Protection Threshold	JEITA_T4_TEMP	0.14	0.156	0.172	V		
UART Communication								
V _{BAT_LOW}	Low Battery	Programmed Range Reg1CH[4:3]	3.2		3.5	V		
	Voltage Threshold	Reg1C[4:3]=10,BAT Rising I _{BAT_LOW_SETTING} =3.4V	3.3	3.4	3.5	V		
Logic I/O Characteristics								
VIL	Low Logic Voltage Threshold				0.4	V		
VIH	High Logic Voltage Threshold		1.3			V		
Digital Clock and Watchdog Timer								
F _{DIG}	Digital Clock		28	32	36	kHz		
Twdt	Watchdog Timer	Reg1C[2:1]=11b		160		S		

Unless otherwise noted, typical values are at V_{IN}=5V, V_{BAT}=4V, T_{A}=25^{\circ}C.

Note1. Guaranteed by design and characterization. Not a FT item.

I²C mode Timing

Symbol	Parameter	Min	Тур	Max	Unit
Fscl	SCL Clock Frequency	0 -		400	kHz
tbuf	Bus Free Time Between a STOP and	1 2	-	-	μs
	START Condition	1.5			
thd:sta	Hold Time (Repeated) START Condition	0.6 -		-	μs
t∟ow	Low Period of SCL Clock	1.3	-	-	μs
tнigн	HIGH Period of SCL Clock	0.6	-	-	μs
t _{su:sta}	Setup Time for a Repeated START Condition	0.6	-	-	μs
t _{HD:DAT}	Data Hold Time	0.1	-	0.9	μs
tsu:dat	Data Setup Time	100	-	-	ns
t _R	Data Hold Time2	-	20+0.1Cb ⁽²⁾	300	ns
t⊧	Data Hold Time2	-	20+0.1Cb ⁽²⁾	300	ns
tsu:sto	Setup Time for STOP Condition	0.6	-	-	μs

Note2. Cb=total capacitance of one bus line in pF.

Figure 15. I²C mode Timing Diagram

Typical Application Circuits

*Note**. This electric circuit only supplies for reference.

Package Dimension

Revision History and Checking Table

Version	Date	Revision Item	Modifier	Function & Spec Checking	Package & Tape Checking	
0.0	2023-02-18	Preliminary Version	Xia Yong Jie	Xia Yong Jie	Liu Jia Ying	
1.0	2023-10-17	Update EC Table Spec	Yin Peng	Xia Yong Jie	Liu Jia Ying	
1.1	2024-05-23	Update Typeset and EC Table Spec	Yin Peng	Xia Yong Jie	Liu Jia Ying	