7-Channel LDO PMIC for Camera Applications

General Description

The ET5917 is CMOS-based low-dropout, low-power linear regulator. It's a 7-channel integrated LDOs for camera applications. Two channels offering max 1500mA with NMOS pass transistor, five channels offering max 600mA with PMOS pass transistor. ET5917 include 1000kHz high speed I²C interface, the function setting is flexible such as power sequence, output voltage, output discharge, current limit per channel. The ET5917 also integrates the fault monitoring features with interrupt indication.

The ET5917 is available in WLCSP20(1.8mm×1.544mm,0.35mm pitch), Wafer-Level Chip-Scale Package.

Features

- LDO1 and LDO2
 - -- VIN12 input voltage range: 0.6V to 2.0V
 - -- LDO1/2 output: 0.496V~1.8V@8mV/step
 - -- Max 1500mA Output Current Capability
 - -- Ultra Low dropout: Typ.100mV at 1500mA, 1.2V Output
- LDO3~LDO7
 - -- VIN34/VIN5/VIN6/VIN7 input voltage range: 1.8V to 5.5V
 - -- LDO3~LDO7 output: 1.380V~3.412V@ 8mV/step
 - -- Max 600mA Output Current Capability
 - -- Less than 10uV(typ) Noise
 - -- Ultra Low dropout: Typ.110mV at 600mA, 2.8V Output
- Very Low Input quiescent current of Typ. 120µA
- Operation guaranteed with battery voltage down to 2.7V
- Programmable Power Start-Up/Down Sequencing
- Built-in thermal Global Shutdown Protection (OTP)
- Built-in under Voltage Protection(UVP)
- Built-in over current protection(OCP) and auto-discharging circuit
- Built-in under voltage lockout (UVLO)
- I²C serial control to program output voltage and features

Device Information

Part No.	Package	MSL
ET5917	WLCSP20 (1.8mm×1.544mm,0.35mm pitch)	1

Applications

- Constant-voltage power supply for battery-powered device
- Constant-voltage power supply for smartphones, tablets
- Constant-voltage power supply for cameras, DVRs, STB and camcorders

Pin Configuration

● VIN6 A1	VIN7 A2	LDO7 A3	LDO2 A4	VIN12 A5					
LDO6 B1	INTN B2	SDA B3	SCL B4	LDO1 B5					
LDO4 C1	AGND C2	AGND C3	RESET_N	C5					
LDO3 D1	VIN34	VSYS D3	VIN5 D4	LDO5					
TOF	TOP View (Bumps Down) WLCSP20								

Pin Function

Pin No.	Pin Name	Pin Function
A1	VIN6	Input power pin for LDO6.
A2	VIN7	Input power pin for LDO7.
A3	LDO7	LDO7 regulator output
A4	LDO2	LDO2 regulator output
A5	VIN12	Input power pin for LDO1 and LDO2.
B1	LDO6	LDO6 regulator output
B2	INTN	Interface pin for interrupts. Open-drain or push-pull mode; the output voltage of push-pull can be selected to 1.2V or 1.8V. This pin returns to
D2		low when all I ² C interrupt
B3	SDA	I ² C Data pin. Node should be tied high through a pull up resistor.
B4	SCL	I ² C Clock pin. Node should be tied high through a pull up resistor.
B5	LDO1	LDO1 regulator output
C1	LDO4	LDO4 regulator output
C2	AGND	Ground pin.
C3	AGND	Ground pin.
		RESET_N pin is used to enable basic circuits necessary for controlling
C4	RESET_N	the PMIC and reset all the digital block. The RESET_N pin has an
		internal pull-down and should always be connected to a logic high or low.
C5	VREF	Reference bypass pin. If used, connect a 100nF capacitor between this
0.5	VNEF	pin and analog ground.
D1	LDO3	LDO3 regulator output
D2	VIN34	Input power pin for LDO3 and LDO4.
D3	VSYS	System power pin. Route trace from system to this pin.
D4	VIN5	Input power pin for LDO5.
D5	LDO5	LDO5 regulator output

Block Diagram

Functional Description

ET5917 has 7 LDO regulators. LDO1/2 are using NMOS pass transistor for output voltage regulation. The others LDOs are using PMOS pass transistor for output voltage regulation. The ET5917 LDO1 and LDO2 output voltages can be programmed via I²C from 0.496V to 1.8V in 8mV steps and LDO3-LDO7 can programmed from 1.380V to 3.412V in 8mV steps using the associated I²C registers. The voltage transition going from a lower to a higher voltage is a single step with transition time dependent on output current and output capacitance. The output current drives the voltage slew rate from higher to lower voltage transitions.

The device is in reset when the RESET_N is low and will power up the device's main control circuits when RESET_N is pulled high.

If LDOx_EN bits are set to 1 prior to VSYS_EN bit being asserted to 1, the LDOs will power up a short time after VSYS_EN is set to 1. When the VSYS_EN bit is set to 0, all LDOs will be shut off, and SUSD_STAU(0x1b) register will be cleared. Additionally, all fault counters will reset to 0.

When RESET_N is pulled high and SYS_EN bit is set to 1, each LDO can be accomplished using I²C register LDOx_EN bit in register 0x03 or the LDOs can be powered up/down sequentially using the Sequence State Machine, settable using the register bits in registers 0x0B to 0x0F. The device is also designed to support multiple start-up or shut-down sequences for multiple module loads.

The current limit and deglitch timer of each LDO can be programmed to optimize the LDO performance for the application. The device monitors each power input pin and each LDO output. If any of these below a threshold a status and interrupt bit are set.

RESET_N pin, VSYS_EN Bit and ENABLE BITS

The tables below provide the states of the LDOs based on the combination of the RESET_N pin, register bit VSYS_EN and enable register bits.

RESET_N	VSYS_EN	LDOX_SEQ	LDOX_EN	SEQ_CONTROL Dependent	On/Off
0	Reset to 0	Reset to 0	Reset to 0	No	Off
1	0	000	0	No	Off
1	1	000	0	No	Off
1	0	>000	0	No	Off
1	1	>000	0	Yes	CNTL
1	0	000	1	No	Off
1	1	000	1	No	ON
1	0	>000	1	No	Off
1	1	>000	1	Yes	CNTL

Note: CNTL indicates that the state of the output will be dependent on the setting of the seq_ctrl[1:0] bits. When RESET_PIN is high and vsys_en bit is set to 1, seq_ctrl[1:0]=2'b01 will enable any outputs based on their LDOX_SEQ>000.

Power Up/down Sequence Control

The recommended power on sequence of ET5917 is to power on VSYS first, then power on input power VINx, then set RESET_N to high level, and then enable LDOx. The corresponding power off sequence is to turn off LDOx first, then set RESET_N to low level, then power off input power VINx, and finally power off VSYS.

The ET5917 LDO's can be enabled two ways using the I²C register bits if RESET_N is high.

1. Setting LDOX_SEQ=000 in 0x0B(LDO12_SEQ) or 0x0C(LDO34_SEQ) or 0x0D(LDO56_SEQ) or 0x0E(LDO7_SEQ) and the LDOX_EN assigned to the LDO in register 0x03, ENABLE to 1.

2. Setting LDOX_SEQ>000 in registers 0x0B/C/D/E and then set seq_ctrl[1:0]=2'b01 in the 0x0F, SEQ_CTR register.

ET5917 LDOs have internal soft-start which limits the battery current to the setting LDOX_ILIM in register 0x02. If an LDO output fails to reach 90% of the programmed voltage at start-up, a UVP fault is declared. See the output UVP section for description of LDO.

Power-up and shut down of each regulator can be controlled by an I²C register. It can be set at the registers Idox_seq[2:0] (x=1 to 7) respectively. Idox_en is an internal signal to enable one of regulators, if Idox_seq[2:0] set to '000', that LDOX channel can be controlled directly by a bit specified in register LDO_EN. LDOX_VSET[7:0] can set output voltage of each channel.

3. Automatic power up/down sequence control.

ET5917 has seven SLOTs to which each regulator can be assigned.

They are started by seq_ctrl[1:0] signal. when seq_ctrl[1:0] is set '01'. Internal counter seq_cnt[2:0] starts increments from 0 ("000") to 7 ("111"). When seq_ctrl[1:0] is set '10', seq_cnt[2:0] decrements from 7 ("111") to 0 ("000"). Regulators assigned to one of SLOTs starts power-up or power-down.

The seq_cnt[2:0] matches the SLOT number, when seq_cnt[2:0]=000, it indicates that sequencing has completed or not started.

Internal logic signal seq_on=1 indicates that sequencing is executing and somewhere between the start of slot 1 and the end of slot 7, seq_on=0, it indicates that has completed or not started.

Sequence Timing and Control

State Description:

1. vsys_en is set to 1 and the band gap and internal clock are started. A minimum time of 100us needs to be allowed between vsys_en being asserted high and seq_ctrl[1:0] changed to 01 in order for the device to transition from shutdown to Sleep mode where the Bandgap and digital circuitry are enabled.

2. Upon seq_ctrl[1:0] being set to 01, LDO5 is started in slot 1 (ldo5_seq[2:0]=001). seq_ctrl[1:0] bits are cleared immediately after the sequence is initiated. LDO1 and LDO3 are started in the associated slot given to their ldox_seq value.

3. The Ido5_seq[2:0] is set to 000, disabling the LDO.

4. Ido2_seq[2:0] and Ido4_seq[2:0] are set and a new sequence is started when seq_ctrl[1:0] is set to 01 again. The state of any other LDO is not changed.

5. vsys_en is set to 0 and all LDOs are disabled.

- 6. vsys_en is set to 1 enabling the IC.
- 7. Ido5_en is set to 1 and LDO5 is enable.
- 8. seq_ctrl[1:0] is set to 10, starting a shutdown sequence
- 9. Asynchronous to the shutdown sequence LDO5 is disabled when Ido5_en=0.

If an LDO faults during a start-up sequence, the other LDOs will still be started in their assigned time slot. The ldox_seq[2:0] bits for the faulted LDO will remain set to the assigned slot. The system can then attempt to start the faulted LDO in another sequence by setting the seq_ctrl[1:0] bits to 01 or by clearing the ldox_seq[2:0] bits to 000 and then writing a "1" to the ldox_en Enable bit.

Shutdown

To disable the ET5917 LDO(s), set the I²C register bit, Idox_en assigned to the LDO in register 0x03 to 0 or if register, 0x0F, SEQ_CTR bits [5:4], seq_ctrl[1:0] is set to "10" and Idox_seq[2:0]>000, the LDO(s) will be disabled in the Reserved order of time slot they are assigned. To do a global shutdown of all LDOs set the RESET_N pin low.

Multiple Fault Shutdown

To prevent repetitive starting and faulting of an LDO, detection of 3 failures will result in a complete shutdown of the LDO. If for instance LDO1 where to have a qualifying UVP condition and the LDO was disabled, LDO1 will be restarted 20ms later. If LDO1 where disable three times due to any faults (UVP, OCP or Short Circuit), LDO1 would be permanently shutdown until it is re-enabled by I²C commands. When LDO1 is shutdown under such a condition, the LDO1_EN bit is set to 0 and the Ido1_seq[2:0] is set to 000. This shutdown behavior applies to all of the ET5917 LDOs.

If UVP, OCP occurs when flt_sd_b is set to 1, the LDO(s) is not disabled and the fault counter is not incremented, but the interrupt and status bits indicate the fault occurred. flt_sd_b=1 doesn't prevent shutdown of LDOs when VIN12, VIN34, VIN5, VIN6 or VIN7 are in a UVLO condition, but the fault counter is not incremented.

When flt_sd_b=0, if there are any combination of four VSYS_UVLO and/or Thermal Shutdown faults (shutdown and after 20ms restart again for 4 times), the device will permanently shutdown and the chip_susd_stau bit will be set until RESET_N has been set to low and is set to high again; When flt_sd_b=1, if there is VSYS_UVLO or Thermal Shutdown faults, the device will shutdown and restart until the faults are released.

State Description

1. A timer starts at the beginning of a UVP event and the UVP condition remains for the timer length(>50us), the converter is disabled for the first time.

2. The converter Idox_uvp_stau is set and 50us later the Ido_uvp_int bit is set and the INTN pin is pulled down(open-drain output mode). The converter is disabled and the Ido_uvp_stau bit is blanked, the Idox_susd bit is set while the conveter is suspended until the next start. The fault_cnt[1:0] is incremented upon shutdown.

3. The converter fails to reach UVP_Rising(90% Vtarget) within 1ms of restart-up. Since the flt_sd_b=0, a second UVP failure is counted.

4. At the restart, the interrupt bit remains a 1until read. The ldox_susd bit is reset by the restart action. The converter successfully reaches a voltage above UVP_Rising within 1ms and runs. Meanwhile the flt_sd_b and ldox_seq[2:0] are set to 1 and >000 respectively.

5. With flt_sd_b set to 1 when the fault occurs, the converter remains on, but the interrupt bit is set to one and INTN pin is pulled down. The Idox_susd bit remains a "0" since the converter remains enabled.

6. The ldo_uvp_stau is set when the fault occurs, but clears when the converter is >90% of the target voltage.

7. When the converter is shutdown for the third time, the ldox_en is set to 0; ldox_seq is set to 000; The ldox_uvp_stau bit is set to 0. The fault_cnt[1:0] keep three and ldox_susd keep high level.

8. When RESET_N is set to high, the fault_cnt[1:0] is cleared to 0 and ldox_susd is cleared to 0. At the same time, ldox_uvp_int is cleared to 0. Another way to clear fault_cnt[1:0] and ldox_susd bits is reset the ldox_en or ldox_seq bit, and LDOx will restart again.

UVLO Rising

All LDOs use VSYS to power their analog and control circuitry. For proper operation the VSYS input is monitored for under voltage conditions. LDO1 and LDO2 use VIN12, LDO3 and LDO4 use VIN34, LDO5 uses VIN5, LDO6 uses VIN6 and LDO7 uses VIN7 to power their outputs.

If VSYS is greater than the POR threshold (~2.0V), but did not reach VSYS_UVLO_RISE when RESET_EN is high, a UVLO interrupt vsys_uvlo_int bit and the status bit sys_uvlo_stau are set and the INTN pin is asserted low. When the LDO(s) are commanded to start or are running when VSYS falls below the UVLO threshold, but above VPOR, a re-start of the LDO(s) will be attempted again for the longer of 20ms (flt_sd_b=0) or when the VSYS rises above the VSYS_UVLO_RISE threshold. While in this state, the chip_susd_stau bit is set. The status bit remains set to "1" only while VSYS>VSYS_UVLO_RISE. The Interrupt bit will be cleared when read.

LDO1 and LDO2 may temporarily start if one or both VIN12 and VSYS have not reached VIN12_UVLO THRESHOLD RISING or VSYS_UVLO_RISE level respectively prior to the LDO being enabled. If VSYS is good, but VIN12 is not when LDO1 and/or LDO2 are enabled, the interrupt bit Ido12_uvlo_int and status bit, Ido12_uvlo_stau are set and the INTN pin will be pulled low. Additionally, Ido1_susd and/or Ido2_susd will be set to "1" the longer of 20ms(flt_sd_b=0) or until VIN12 is greater than VIN12_UVLO_RISE. At which time the SUSD bits will be cleared and the LDO(s) started. The Ido12_uvlo_stau, status bit remains set as long as VIN12 < VIN_UVLO_RISE. Similarly UVLO for VSYS, the LDO will not be restarted for a minimum of 20ms and until VIN12 is greater than VIN12_UVLO_RISE. When the set output is low and the input voltage is less than 1.0V, the state of VIN12_UVLO should be ignored.

UVLO for LDO3 and LDO4 are identical to that described above for LDO1 and LDO2. The UVLO threshold for LDO3 and LDO4 are VIN34_UVLO_RISE. Behavior for LDO5, LDO6 and LDO7 are similar relative to VIN5, VIN6 and VIN7 as that discussed for LDO1.

Notes:

- Status bits may not be reliable until VSYS has reached a level of ~2.0V (VPORmax).

- The power on speed of VSYS should be faster than 2.7v/ms, otherwise it will be interrupted due to UVLO.

UVLO Falling

If VSYS falls below its VSYS_UVLO_FALL, falling threshold while one or more of the LDOs are enabled, a UVLO interrupt in 0x17, vsys_uvlo_int is set and the INTN pin is pulled low. A status bit in register 0x1A, vsys_uvlo_stau is also set while the rail remains below the rising UVLO threshold. Likewise, if VIN12, VIN34, VIN5, VIN6 or VIN7 fall below their falling threshold while the respective LDO is enabled, the associated input TSD_UVLO_STAU register bits will be momentarily set, the bits in TSD_UVLO_INT will be set and the INTN pin is pulled low. Then the LDOs will be disabled, the status bit reset and the associated Idox_susd bit in 0x1B, SUSD_STAU set to indicate the supply has been suspended.

VSYS State	RESET_N	VSYS_EN	Results
VSYS < VPOR	Low	1	Device in shutdown, I ² C registers not reliable
VPOR <vsys<uvlo< td=""><td>Low</td><td>1</td><td>Device in shutdown, I²C registers not reliable</td></vsys<uvlo<>	Low	1	Device in shutdown, I ² C registers not reliable
VSYS > UVLO	Low	1	Device in shutdown, I ² C registers not reliable
VSYS < VPOR	High	1	Device in shutdown, I ² C registers not reliable
VPOR < VSYS	Lliada	4	Band Gap on, I ² C registers readable. It will report the
<uvlo< td=""><td>High</td><td></td><td>VSYS UVLO Fault.</td></uvlo<>	High		VSYS UVLO Fault.
VPOR < VSYS	Lliab	0	Band Gap off, I ² C registers readable. It will report the
<uvlo< td=""><td>High</td><td>0</td><td>VSYS UVLO Fault.</td></uvlo<>	High	0	VSYS UVLO Fault.
VSYS > UVLO	High	1	Band Gap on. Device can enable by I ² C.

PMIC Operation in VSYS UVLO

When an over-temperature or a VSYS UVLO event occurs, all ET5917 LDOs are disabled for a minimum of 20ms(flt_sd_b=0). For UVLO on the LDO inputs, the individual LDO's will be disabled for a minimum of 20ms(flt_sd_b=0) and until the voltage rises above UVLO_VSYS_RISE.

Current Limit Protection

For each channel, when output current of LDO output pin is higher than current limit threshold or the output pin is direct short to GND, the current limit protection will be triggered and clamp the output current at a predesigned level to prevent over-current and thermal damage. Set related bits to select Current limit threshold register.

The LDO output current is short-circuit protected and the short-circuit current level can be programmed using the settings in register 0x02, LDO_ILIMT. When a short occurs(VLDO1/2<35%VSET, VLDO3~7<0.5V) on the LDOx output, the current is automatically limited to the programmed current limit and Vout may drop, depending on the difference between the input and target output voltage. The resultant VOUT is the product

of current limit setting in register 0x02 LDO_ILIMT and the load impedance. When current limit is detected, the associated OCP status bit in 0x19, OCP_STAU is set to "1", If the LDOx remains in current limit for 1ms(default value), an interrupt bit in register 0x16, OCP_INT is generated and the INTN pin is pulled low. Then the LDOx is disabled, the status bit in 0x16 OCP_STAU register is reset to 0 and the associated suspend bit in the 0x1B SUSD_STAU register is set to "1".

The LDOx will attempt a restart 20ms later(flt_sd_b=0) and the associated suspend will be reset to "0". If the associated interrupt bit was not read while the output was suspended, the interrupt will remain a 1 after restart and INTN (if not masked) will remain low.

Note: The OCP deglitch timer can be programmed to one of four periods by setting Reg. 0x11, bits [2:1].

Inrush Current Limit

After enable the LDOs, the inrush current limit circuit is in operation, LDO1~2 inrush time is approximately 2ms, and LDO3~7 inrush time is approximately 700us. Therefore, the load current should be drawn after the output voltage reached the preset value.

If the load current is drawn during the start-up, it should be within the following values:

$I_{OUT}x \le 2/3 *$ Normal current limit

Thermal Shutdown Protection

When the die temperature rises to a nominal 125°C, a thermal warning interrupt occurs setting the tsd_wrn_int bit to "1" and INTN pin is pulled low. The tsd_wrn_stau register bit will be set to "1" and remain set until the die temperature drops to a nominal value of 100°C.

If the die temperature continues to rise above the thermal warning level, a Thermal Shutdown event is activated at a nominally 145°C. When the Thermal Shutdown level is reached, all power outputs are disabled without shutdown sequencing, but I²C communications remain. The device remains in thermal shutdown until the die temperature falls to approximately +120°C.

At the time a Thermal Shutdown detection occurs, the tsd_int, interrupt bit is set and the INTN pin is pulled low to notify the system of the event. The tsd_stau, register bit is also set and will remain set as long as the device is above TWRN°C. The C_SUSD bit is set while the device is shutdown due to the overtemp condition.

After the die temperature has fallen below the TWRN threshold following a Thermal Shutdown event, the state of the I²C control registers will remain as they were prior to shutdown, the tsd_wrn_stau and tsd_stau bits will clear and the device will return to the operating conditions prior to the thermal shutdown event.

Output UVP (Under Voltage Protection)

If the LDO is enable and the output voltage falls approximately 20%(10% for LDO1/2) below the programmed voltage, the associated UVP Status bit in register 0x18, UVP_STAU will be set to "1". If the fault persists for more than 50us the UVP Interrupt bit in register 0x15, UVP_INT will be set to "1" and the INTN pin will be pulled low. The LDO will then be disabled, the associated Status bit set back to "0" and Suspend bit in 0x1B, SUSD_STAU set to a "1". The interrupt bit will be cleared upon a read of the bit.

The LDO will be restarted 20ms (providing it is not the third fault) after it was shutdown by a UVP event and the suspend bit in SUSD_STAU reset to "0". If the associated UVP interrupt bit is not read while the output was suspended, the interrupt (if not masked) will remain a "1" after restart and INTN will remain low.

In order to make the UVP of LDO 3 ~ 7 work normally, the input voltage of LDO should be greater than the output voltage, and the voltage of VSYS should be greater than the output voltage of LDO.

UVP Timing

The timing diagram below represents the general way each LDO's under-voltage circuitry behave. The names shown in the diagram are general descriptions.

In the first UVP detection case, the Idox_uvp_stau bit is set when the fault is detected and after a 50us wait

period, the ldox_uvp_int bit is set and the INTN pin is pulled low. The LDO output is disabled, the Status bit is reset and then the associated ldox_susd bit in SUSD_STAU register is set. After 20ms(flt_sd_b=0) the LDO is restarted and the SUSD_STAU bit is cleared. Shown in the graph is a read of the interrupt bit register before the 20ms expires. This clears the interrupt bit and the INTN pin is released and rises high.

In the second case, the output is not in the UVP condition for the qualifying time (UVP_TMR) and ldox_uvp_stau bit returns to 0.

For the third case, the output falls for longer than UVP_TMR and the interrupt bit is set, the LDO is disabled, the Status bit reset and the ldox_susd, suspend bit is set. Since the interrupt is masked by ldox_uvp_mask, the INTN pin is not pulled low until the Mask bit is set back to "0". When the LDO is re-enabled after 20ms(flt_sd_b=0), the ldox_uvp_int remains a "1" as the register bit was not read.

Auto Discharging

For each channel, when shut down the output, the Auto-Discharging circuit will be turned on to discharge the electric charge on output capacitor, and decrease the voltage of output pin in very short time. The Auto-Discharging function is optional. Set related bits to select output discharge function for Discharge Resistor (LDO_DIS Register), "1": Enable. "0": Disable.

Input and output Capacitor

The LDO1/2 are designed to be stable for ceramic output capacitors with Effective capacitance in the range from 3.3μ F to 22μ F. The LDO3~LDO7 are designed to be stable for ceramic output capacitors with Effective capacitance in the range from 1μ F to 10μ F.

The device is also stable with multiple capacitors in parallel, having the total effective capacitance in the specified range. In applications where no low input supplies impedance available, the recommended C_{VSYS} , C_{VIN34} , C_{VIN5} , C_{VIN6} , C_{VIN7} , Capacitance ≥ 0.68 uF and $C_{VIN12} = \geq 3.3$ uF.

Serial Port Interface (I²C)

Bus Interface

Baseband Processor can transmit data with ET5917 each other through SDA and SCL port. SDA and SCL composite bus interface, and a pull-up resistor to the power supply should be connected.

Data Validity

When the SCL signal is HIGH, the data of SDA port is valid and stable. Only when the SCL signal is low, the level on the SDA port can be changed.

Start (Re-start) and Stop Working Conditions

When the SCL signal is high, SDA signal from high to low represents start or re-start working conditions, while the SCL signal is high, SDA signal from low to high represents stop working conditions.

Byte format

Each byte of data line contains 8 bits, which contains an acknowledge bit. The first data is transmitted MSB.

Acknowledge

During the writing mode, ET5917 will send a low level response signal with one period width to the SDA port. During the reading mode, ET5917 will not send response signal and the host will send a high response signal one period width to the SDA.

- ACK=Acknowledge
- MSB=Most Significant Bit
- S=Start Conditions RS=Restart Conditions P=Stop Conditions
- Fastest Transmission Speed =1000KBITS/S
- Restart: SDA-level turnover as expressed by the dashed line waveform

I²C Slave Address

The default 7bit I²C slave address is 1100001b(0x61), and 8bit address for the writing register mode is 11000010b(0xC2), the reading register mode is 11000011b(0xC3). The I²C address can also be changed by setting the 2 bits in register 0x12, i2c_adr_sel[1:0] register bits reflects the default options available for request. The Address register will be cleared back to default setting anytime a power-on-reset POR or when a software reset is implemented in the SOFT_RESET register.

I²C Writing Command Register Interface Protocol (continuous):

CI	Chip write address(C2H) Write Reg start address(00-1EH)												
1				Reç	g Data 人								
Start	Start Chip Address ack cmdadr ack					ack	cmd1	ack		ack	cmdn	ack	Stop/Rs
	Figure 11. I ² C Writing Command Register(continuous)												

- Start=Start Conditions
- Chip address=Write register address =1100001+0(w)b
- ack=Acknowledge from ET5917
- Write Reg start address byte = cmdadr(xxxx + REG's 5bit addre)
- ack=Acknowledge from ET5917
- Reg data 0 = cmd0(Command data0)
- ack=Acknowledge from ET5917
-
- Reg data n =cmdn(Command datan)
- ack=Acknowledge from ET5917
- Stop/Rs=Stop Condition/Restart Condition

I²C Writing Command Register Interface Protocol (single):

- Start=Start Conditions
- Chip address =Write register address=1100001+0(w)b
- ack=Acknowledge from ET5917
- Write Reg start address byte = cmdadr(xxxx + REG's 5bit addre)
- ack=Acknowledge from ET5917
- Reg data= cmd(Command data)
- ack=Acknowledge from ET5917
- Stop/Rs=Stop Condition/Restart Condition

I²C Reading Command Register Interface Protocol(continuous)

	Chip write address(C2H) Write Reg start address(00-1EH) Chip write address(C3H)														
Start	Chip Address	ack	cmdadr	ack	Restart	Chip Address	ack	Dataout0	ack		Dataout(n-1)	ack	Dataoutn	nack	Stop/Rs
	Figure 13. I ² C Reading Command Register(continuous)														

• Start=Start Conditions

- Chip address =Write register address=1100001+0(w)b
- ack=Acknowledge from ET5917
- Write Reg start address byte = cmdadr(xxxx + REG's 5bit addre)
- ack=Acknowledge from ET5917
- Restart=Restart condition
- Chip address Read register address=1100001+1(r)b
- ack=Acknowledge from ET5917
- Dataout0=Register data output 0
- ack=Acknowledge from Host
-
- Dataoutn=Register data output n
- nack=No Acknowledge from Host
- Stop/Rs=Stop Condition/Restart Condition

I²C Reading Command Register Interface Protocol(single)

C	Chip write address(C2H)		Write Reg start address	(00-1EH))	Chip write address(C3H	H)				
1		w 0	x x x a d d	r e	[↓ 1 1 0 0 0 0 1	r 1	Reg Data Output			
Start	art Chip Address ack cmdadr ack I				Restart	Chip Address	ack	Dataout	nack	Stop/Rs	
	Figure 14. I ² C Reading Command Register(single)										

- Start=Start Conditions
- Chip address =Write register address=1100001+0(w)b
- ack=Acknowledge from ET5917
- Write Reg start address byte = cmdadr(xxxx + REG's 5bit addre)
- ack=Acknowledge from ET5917
- Restart=Restart condition
- Chip address Read register address=1100001+1(r)b
- ack=Acknowledge from ET5917
- Dataout=Register data output
- nack=No Acknowledge from Host
- Stop/Rs=Stop Condition/Restart Condition

Register Map

Addr	Name	RST	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
0X00	CHIPID	0X91		L	100	100			chip_id[1:0]		
0x01	VERID	0x00			000	000			ver_i	d[1:0]	
0x02	LDO_ILIMIT	0x7F	0	ldo7_ilimt	ldo6_ilimt	ldo5_ilimt	ldo4_ilimt	ldo3_ilimt	ldo2_ilimt	ldo1_ilimt	
0x03	LDO_EN	0x80	vsys_en	ldo7_en	ldo6_en	ldo5_en	ldo4_en	ldo3_en	ldo2_en	ldo1_en	
0x04	LDO1_VSET	0x95		L	l	ldo1_vs	set[7:0]		L		
0x05	LDO2_VSET	0x95				ldo2_vs	set[7:0]				
0x06	LDO3_VSET	0xB3				ldo3_vs	set[7:0]				
0x07	LDO4_VSET	0xB3				ldo4_vs	set[7:0]				
0x08	LDO5_VSET	0xB3				ldo5_vs	set[7:0]				
0x09	LDO6_VSET	0xB3				ldo6_vs	set[7:0]				
0x0A	LDO7_VSET	0xB3				ldo7_vs	set[7:0]				
0x0B	LDO12_SEQ	0x00	(00		ldo2_seq[2:0]			ldo1_seq[2:0]]	
0x0C	LDO34_SEQ	0x00	(00		ldo4_seq[2:0]			ldo3_seq[2:0]]	
0x0D	LDO56_SEQ	0x00	(00		ldo6_seq[2:0]			ldo5_seq[2:0]]	
0x0E	LDO7_SEQ	0x00			00000				ldo7_seq[2:0]]	
0x0F	SEQ_CTR	0x00	seq_sp	eed[1:0]	seq_c	trl[1:0]	seq_on	seq_cnt[2:0]			
0x10	LDO_DIS	0x7F	0 Ido7_dis		ldo6_dis	ldo5_dis	ldo4_dis	ldo3_dis	ldo2_dis	ldo1_dis	
0x11	RESET	0x07		soft_re	eset[3:0]		0	ocp_tir	me[1:0]	flt_sd_b	
0x12	I ² C_ADDR	0xC1	int_level_sel	int_mode_sel	int_trig_sel		000		I ² C_add	r_sel[1:0]	
0x13	Reserved	0x00									
0x14	Reserved	0x00									
0x15	UVP_INT	0x00	0	Ldo7_uvp_int	ldo6_uvp_int	ldo5_uvp_int	ldo4_uvp_int	ldo3_uvp_int	ldo2_uvp_int	ldo1_uvp_int	
0x16	OCP_INT	0x00	0	ldo7_ocp_int	ldo6_ocp_int	ldo5_ocp_int	ldo4_ocp_int	ldo3_ocp_int	ldo2_ocp_int	ldo1_ocp_int	
0.47	TSD_UVLO	000	to al inst	ted upon int	vsys_uvlo	ldo7_uvlo	ldo6_uvlo	ldo5_uvlo	ldo34_uvlo	ldo12_uvlo	
0x17	_INT	0x00	tsd_int	tsd_wrn_int	_int	_int	_int	_int	_int	_int	
010		000	0	ldo7_uvp	ldo6_uvp	ldo5_uvp	ldo4_uvp	ldo3_uvp	ldo2_uvp	ldo1_uvp	
0x18	UVP_STAU	0x00	0	_stau	_stau	_stau	_stau	_stau	_stau	_stau	
0×10	OCD STALL	0x00	0	ldo7_ocp	ldo6_ocp	ldo5_ocp	ldo4_ocp	ldo3_ocp	ldo2_ocp	ldo1_ocp	
0x19	OCP_STAU	0000	0	_stau	_stau	_stau	_stau	_stau	_stau	_stau	
0×14	TSD_UVLO	0,00	tod otou	tsd_wrn	vsys_uvlo	ldo7_uvlo	ldo6_uvlo	ldo5_uvlo	ldo34_uvlo	ldo12_uvlo	
0x1A	_STAU	0x00	tsd_ stau	_stau	_stau	_stau	_stau	_stau	_stau	_stau	
0x1B	SUSD STAU	0x00	chip_susd	ldo7_susd	ldo6_susd	ldo5_susd	ldo4_susd	ldo3_susd	ldo2_susd	ldo1_susd	
UXID	303D_31A0	0,00	_stau	_stau	_stau	_stau	_stau	_stau	_stau	_stau	
0x1C	UVP_INTMA	0x00	0	ldo7_uvp	ldo6_uvp	ldo5_uvp	ldo4_uvp	ldo3_uvp	ldo2_uvp	ldo1_uvp	
0,10		0,00	0	_mask	_mask	_mask	_mask	_mask	_mask	_mask	
0x1D	OCP_INTMA	0x00	0	ldo7_ocp	ldo6_ocp	ldo5_ocp	ldo4_ocp	ldo3_ocp	ldo2_ocp	ldo1_ocp	
		0,00		_mask	_mask	_ mask	_mask	_mask	_mask	_mask	
0x1E	TSD_UVLO	0x00	tsd_mask	tsd_wrn	vsys_uvlo	ldo7_uvlo	ldo6_uvlo	ldo5_uvlo	ldo34_uvlo	ldo12_uvlo	
	_INTMA	0,00		_mask	_mask	_mask	_mask	_mask	_mask	_mask	

• 0x00 CHIPID Register---- Indicates the product ID with revision. Default=0x91 Type: Read only

chip_id[1:0] Indicates the product ID with revision. Read only.

• 0x01 VERID Register---- Indicates the device ID with revision. Default = 0x00 Type: Read only

ver_id[1:0] Indicates the device ID with revision. Read only.

• 0x02 LDO_ILIMIT Register ----LDO Current Limit Selection. Default = 0x7F

The detail current limit threshold value is shown in the table as below:

Bit	Name	Default	Туре	Description
7	Rev.	0	R	Reserved
				LDO7 current limit threshold value:
6	ldo7_ilimt	1	R/W	0b: current limit~750mA short current limit~ 70mA
				1b: current limit~950mA short current limit~ 95mA
				LDO6 current limit threshold value:
5	ldo6_ilimt	1	R/W	0b: current limit~750mA short current limit~ 70mA
				1b: current limit~950mA short current limit~ 95mA
				LDO5 current limit threshold value:
4	ldo5_ilimt	1	R/W	0b: current limit~750mA short current limit~ 70mA
				1b: current limit~950mA short current limit~ 95mA
				LDO4 current limit threshold value:
3	ldo4_ilimt	1	R/W	0b: current limit~750mA short current limit~ 70mA
				1b: current limit~950mA short current limit~ 95mA
				LDO3 current limit threshold value:
2	ldo3_ilimt	1	R/W	0b: current limit~750mA short current limit~ 70mA
				1b: current limit~950mA short current limit~ 95mA
				LDO2 current limit threshold value:
1	ldo2_ilimt	1	R/W	0b: current limit~1900mA short current limit~ 430mA
				1b: current limit~2500mA short current limit~ 550mA
				LDO1 current limit threshold value:
0	ldo1_ilimt	1	R/W	0b: current limit~1900mA short current limit~ 430mA
				1b: current limit~2500mA short current limit~ 550mA

• 0x03 LDO_EN Register ----LDOs Chip enable control register. Default = 0x80

LDO enable control register by I²C while the register value of Idox_seq[2:0] are set to be default "000".

This register can be written to enable or disable the corresponding LDO regulator.

Bit	Name	Default	Туре	Description
7	vsys_en	1	R/W	Enable bit for system. The system bias will be getting ready for enabling individual LDO if bit7 = 1 and RESET_N is pulled high Please ensure individual LDO in the off state before bit7 = 0

6	ldo7_en	0	R/W	LDO7 enable control:
0		0	1 1/ 1 1	0b: Disable 1b: Enable
5	ldo6 en	0	R/W	LDO6 enable control:
5			0b: Disable 1b: Enable	
4	ldo5 en	0	R/W	LDO5 enable control:
4	ld05_en	0		0b: Disable 1b: Enable
3	ldo4 en	lo4 en 0	R/W	LDO4 enable control:
5	lu04_en	0		0b: Disable 1b: Enable
2	ldo3 en	0	R/W	LDO3 enable control:
2	ld05_en	0	r////	0b: Disable 1b: Enable
1	ldo2 on	0	R/W	LDO2 enable control:
I	ldo2_en	0	r///	0b: Disable 1b: Enable
0	Ido1 on	0	R/W	LDO1 enable control:
0	ldo1_en	0		0b: Disable 1b: Enable

- 0x04 LD01 Register ---- LD01 output voltage setting register. Default = 0x95 Type: R/W
- 0x05 LDO2 Register ---- LDO2 output voltage setting register. Default = 0x95 Type: R/W

The register LDO1/2_VSET[7:0] set the voltage of LDO1/ LDO2, it have about 200 steps, shown as below table, the formula is VOUT=0.496V+(d-61)*0.008V;

	Output Voltage set by LDO1/2_VSET[7:0]							
Dec	Binary	Output Voltage(V)						
0	0000000	Reserved						
1	0000001	Reserved						
2~60		Reserved						
61	00111101	0.496						
62	00111110	0.504						
63	00111111	0.512						
64~148								
149	10010101(default)	1.200						
150	10010110	1.208						
151	10010111	1.216						
152~222								
223	11011111	1.792						
224	11100000	1.8						
225~255	11100001~1111111	Reserved						

0x06~0x0A LDO3~7 Register ---- LDO3~7 output voltage setting register. Default = 0xB3 Type: R/W

The registers LDO3~7_VSET[7:0] set the voltage of LDO3~LDO7, each voltage have 256 steps, shown as below table, the formula is V_{OUT} =1.372V+d*0.008V.

	Output Voltage set by LDO3~7_VSET[7:0]							
Dec	Binary	Output Voltage(V)						
0	0000000	1.372						
1	0000001	1.380						
2	0000010	1.388						
3~14								
15	00001111	1.492						
16	00010000	1.500						
17	00010001	1.508						
18	00010010	1.516						
19	00010011	1.524						
179	10110011(default)	2.804V						
180	10110100	2.812						
181	10110101	2.820						
255	1111111	3.412						

• 0x0B~0x0E LDO12/34/56/7_SEQ Register ---- Power sequence setting register. Default = 0x00

Power sequence setting register. there are 7 time slots defined as following table. The power-up sequence is start from slot1 to slot7, and shut down start from slot7 to slot1. Power-up and shut down of each LDO regulator can be set at any one of the slots.

ldox_seq[2:0]	VOUTX
000	Controlled by I ² C register Idox_en
001	Slot1
010	Slot2
011	Slot3
100	Slot4
101	Slot5
110	Slot6
111	Slot7

• 0x0F SEQ_CTR Register ---- Power sequence setting and status register. Default = 0x00

Bit	Name	Default	Туре		Descr	iption
				Define the slot perio	od as followir	ng:
				Register V	alue	Slot period(ms)
7.0		00		00		0.5
7:6	seq_speed[1:0]	00	R/W	01		1.0
				10		1.5
				11		2.0
				Enables power-up o	or shut down	of SEQ:
				Register Value		Description
				00	Default	
5.4		00		01	Starts an L	DO power up sequence
5:4	seq_ctrl[1:0]	00	W/C	10	Starts an L	DO shutdown sequence
				11	Bit configur	ation is ignored
				Note: The bits will a	always clear	immediately when written to and
				always read back 0	0.	
				Indicates the activation	tion signal of	SEQ.
				0b: Indicates that the	ne sequencin	g is not in process
3	seq_on	0	R	1b: Indicates that the	ne sequencin	g is executing and somewhere
Ŭ	004_011	0		between the start of	f slot 1 and th	ne end of slot 7. The bit remains
					•	start-up or slot 1 has finished at
				shutdown, regardles	ss of what sl	ots are used.
				Indicates the slot nu	umber of SE	Q at the moment:
				Register Value		SEQ Counter
				000	Sequencing	g has completed or not started
				001	Indicates w	as in slot 1 during register read
2:0	seq_cnt[2:0]	0	R	010	Indicates w	as in slot 2 during register read
2.0			11	011	Indicates w	as in slot 3 during register read
				100	Indicates w	as in slot 4 during register read
				101	Indicates w	as in slot 5 during register read
				110		as in slot 6 during register read
				111	Indicates w	as in slot 7 during register read

• 0x10 LDO_DIS Register ----Discharge Resistor Selection. Default = 0x7F

Each LDO regulators output discharge resistor enable control.

Bit	Name	Default	Туре	Description
7	Rev.	0	R	Reserved
6	ldo7_dis	1	R/W	LDO7 Discharge Enabled/Disabled control: 0b: Disable Pull down will not be activated when LDO7 is disabled by any event, leakage current is about 9uA. 1b: Enable Pull down will be activated when LDO7 is disabled by RESET_N going low or Ido7_en=0 or a Sequenced shutdown or Ido7_susd_stau=1(VIN7_UVLO/LDO7_OCP/LDO7_UVP event) or chip_susd_stau=1(TSD or VSYS_UVLO event)
5	ldo6_dis	1	R/W	LDO6 Discharge Enabled/Disabled control: 0b: Disable Pull down will not be activated when LDO6 is disabled by any event, leakage current is about 9uA. 1b: Enable Pull down will be activated when LDO6 is disabled by RESET_N going low or Ido6_en=0 or a Sequenced shutdown or Ido6_susd_stau=1(VIN6_UVLO/LDO6_OCP/LDO6_UVP event) or chip_susd_stau=1(TSD or VSYS_UVLO event)
4	ldo5_dis	1	R/W	LDO5 Discharge Enabled/Disabled control: 0b : Disable Pull down will not be activated when LDO5 is disabled by any event, leakage current is about 9uA. 1b : Enable Pull down will be activated when LDO5 is disabled by RESET_N going low or Ido5_en=0 or a Sequenced shutdown or Ido5_susd_stau=1(VIN5_UVLO/LDO5_OCP/LDO5_UVP event) or chip_susd_stau=1(TSD or VSYS_UVLO event)
3	ldo4_dis	1	R/W	LDO4 Discharge Enabled/Disabled control: 0b: Disable Pull down will not be activated when LDO4 is disabled by any event, leakage current is about 9uA. 1b: Enable Pull down will be activated when LDO4 is disabled by RESET_N going low or Ido4_en=0 or a Sequenced shutdown or Ido4_susd_stau=1(VIN4_UVLO/LDO4_OCP/LDO4_UVP event) or chip_susd_stau=1(TSD or VSYS_UVLO event)

	r		n	
				LDO3 Discharge Enabled/Disabled control:
				0b: Disable
				Pull down will not be activated when LDO3 is disabled by any event,
				leakage current is about 9uA.
2	ldo3_dis	1	R/W	1b: Enable
				Pull down will be activated when LDO3 is disabled by RESET_N going
				low or Ido3_en=0 or a Sequenced shutdown or
				ldo3_susd_stau=1(VIN3_UVLO/LDO3_OCP/LDO3_UVP event) or
			chip_susd_stau=1(TSD or VSYS_UVLO event)	
			LDO2 Discharge Enabled/Disabled control:	
				0b: Disable
				Pull down will not be activated when LDO2 is disabled by any event,
				the resistance is about 180KΩ.
1	1 Ido2_dis 1 R/V	R/W	1b: Enable	
				Pull down will be activated when LDO2 is disabled by RESET_N going
				low or Ido2_en=0 or a Sequenced shutdown or
				Ido2_susd_stau=1(VIN12_UVLO/LDO2_OCP/LDO2_UVP event) or
				chip_susd_stau=1(TSD or VSYS_UVLO event)
				LDO1 Discharge Enabled/Disabled control:
				0b: Disable
				Pull down will not be activated when LDO1 is disabled by any event,
				the resistance is about 180KΩ.
0	ldo1_dis	1	R/W	1b: Enable
				Pull down will be activated when LDO1 is disabled by RESET_N going
				low or Ido1_en=0 or a Sequenced shutdown or
				Ido1_susd_stau=1(VIN12_UVLO/LDO1_OCP/LDO1_UVP event) or
				chip_susd_stau=1(TSD or VSYS_UVLO event)

• 0x11 RESET Register ----LDOs reset control register. Default = 0x07

Bit	Name	Default	Туре		Description
7:4	soft_reset[3:0]	0000	W/C	their default values.	gins a soft reset of the device I ² C registers to This bit is cleared upon execution of the other value than "1011" will be ignored.
3	Rev.	0	R	Reserved.	
			R/W	limit on all LDOs be	ol the length of the deglitch timer for current fore a fault is triggered:
				Register Value	Slot period(us)
2:1	ocp_time[1:0]	11 R/W		00	125
				01	250
				10	500
				11	1000

	1		T	1
				Prevents Shutdown When a Fault Occurs:
				0b: LDO is shutdown if a UVP or OCP event occurs or if the
				LDO's input VIN12, VIN34, VIN5, VIN6 or VIN7 have a UVLO
				event. Each shutdown time is about 20ms, then restart again,
				when the times of shutdown are arrived to three, the according
				register bit ldox_en will be cleared.
				All LDO(s) are shutdown if a VSYS UVLO or TSD event occurs.
				Each shutdown time is about 20ms, then restart again, when the
				times of shutdown are arrived to four, the according register bit
0	flt_sd_b	1	R/W	ldox_en will be cleared.
				<i>Note:</i> If this bit function is desired, flt_sd_b should be set to "0"
				prior to enabling any LDOs after a Power-On-Reset.
				1b: LDO is not shutdown if a UVP or OCP event occurs. If the
				LDO's input VIN12, VIN34, VIN5, VIN6 or VIN7 have a UVLO
				event, the associated LDO will be shutdown until the supply
				returns, but the fault will not be counted.
				If a VSYS UVLO or TSD event occurs, All LDO(s) will be
				shutdown until the VSYS supply returns and TSD is released,
				but the fault will not be counted.

• 0x12 ADDR Register ---- I²C address select register. Default = 0xC1

Bit	Name	Default	Туре		Description	
	7 int_level_sel			INTN Output high le	evel select in PUSH-PULL mode	
7		1	R/W	0b: Output 1.8 V wh	nen INTN high	
				1b: Output 1.2 V wh	nen INTN high	
				INTN Output Mode	Select:	
6	int_outmode_sel	1	R/W	0b: Using PUSH-PU	JLL for output	
				1b: Using OPEN-DI	RAIN for output	
	5 int_trig_sel			INTN output level w	hen interrupt is triggered	
5		0	R/W	0b: INTN output low	when interrupt is triggered	
				1b: INTN output high when interrupt is triggered		
4:2	Rev.	000	R	Reserved.		
					ge value for customer to select a different	
				I ² C address:		
				Register Value	I ² C Address Settings	
1:0	i²c_addr_sel[1:0]	01	R/W	00	0x20	
				01	0x61	
				10	0x35	
				11	0x72	

• 0x15 UVP_INT Register ---- LDO UVP Interrupt register. Default = 0x00

Bit	Name	Default	Туре	Description
7	Rev.	0	R	Reserved
6	ldo7_uvp_int	0	R/C	LDO7 UVP Interrupt: 0b: Clear It can be cleared by reading this register 1b: Under-Voltage event detected on the LDO7 output.
5	ldo6_uvp_int	0	R/C	LDO6 UVP Interrupt: 0b: Clear It can be cleared by reading this register 1b: Under-Voltage event detected on the LDO6 output.
4	ldo5_uvp_int	0	R/C	LDO5 UVP Interrupt: 0b: Clear It can be cleared by reading this register 1b: Under-Voltage event detected on the LDO5 output.
3	ldo4_uvp_int	0	R/C	LDO4 UVP Interrupt: 0b: Clear It can be cleared by reading this register 1b: Under-Voltage event detected on the LDO4 output.
2	ldo3_uvp_int	0	R/C	LDO3 UVP Interrupt: 0b: Clear It can be cleared by reading this register 1b: Under-Voltage event detected on the LDO3 output.
1	ldo2_uvp_int	0	R/C	LDO2 UVP Interrupt: 0b: Clear It can be cleared by reading this register 1b: Under-Voltage event detected on the LDO2 output.
0	ldo1_uvp_int	0	R/C	LDO1 UVP Interrupt: 0b: Clear It can be cleared by reading this register 1b: Under-Voltage event detected on the LDO1 output.

• 0x16 OCP_INT Register ---- LDO OCP Interrupt Register. Default = 0x00

Bit	Name	Default	Туре	Description
7	Rev.	0	R	Reserved
				LDO7 OCP Interrupt:
6	6 Ido7_ocp_int 0	0	R/C	0b: Clear
0		0	K/C	It can be cleared by reading this register
				1b: Over current event detected on the LDO7 output.

5	ldo6_ocp_int	0	R/C	LDO6 OCP Interrupt: 0b: Clear It can be cleared by reading this register 1b: Over current event detected on the LDO6 output.
4	ldo5_ocp_int	0	R/C	LDO5 OCP Interrupt: 0b: Clear It can be cleared by reading this register 1b: Over current event detected on the LDO5 output.
3	ldo4_ocp_int	0	R/C	LDO4 OCP Interrupt: 0b: Clear It can be cleared by reading this register 1b: Over current event detected on the LDO4 output.
2	ldo3_ocp_int	0	R/C	LDO3 OCP Interrupt: 0b: Clear It can be cleared by reading this register 1b: Over current event detected on the LDO3 output.
1	ldo2_ocp_int	0	R/C	LDO2 OCP Interrupt: 0b: Clear It can be cleared by reading this register 1b: Over current event detected on the LDO2 output.
0	ldo1_ocp_int	0	R/C	LDO1 OCP Interrupt: 0b: Clear It can be cleared by reading this register 1b: Over current event detected on the LDO1 output.

• 0x17 TSD_UVLO_INT Register ---- TSD and UVLO Interrupt Register. Default = 0x00

Bit	Name	Default	Туре	Description
7	tsd_int	0	R/C	Thermal Shutdown Interrupt: 0b: Clear It can be cleared by reading this register 1b: A Thermal Shutdown event detected or that the temperature has fallen below the hysteresis level.
6	tsd_wrn_int	0	R/C	 Thermal Warning Interrupt: 0b: Clear It can be cleared by reading this register 1b: Thermal Shutdown Warning threshold was surpassed or that the temperature has fallen below the hysteresis level.

5	vsys_uvlo_int	0	R/C	VSYS Under-Voltage-Lock-Out Interrupt: 0b: Normal operation It can be cleared by reading this register 1b: Indicates that the VSYS power fell below the UVLO input threshold or that the supplies have risen above the rising thresholds after a UVLO fault
4	ldo7_uvlo_int	0	R/C	 VIN7 Under-Voltage-Lock-Out Interrupt: 0b: Normal operation It can be cleared by reading this register 1b: Indicates that the VIN7 power fell below the UVLO input threshold or that the supplies have risen above the rising thresholds after a UVLO fault
3	ldo6_uvlo_int	0	R/C	 VIN6 Under-Voltage-Lock-Out Interrupt: 0b: Normal operation It can be cleared by reading this register 1b: Indicates that the VIN6 power fell below the UVLO input threshold or that the supplies have risen above the rising thresholds after a UVLO fault
2	ldo5_uvlo_int	0	R/C	 VIN5 Under-Voltage-Lock-Out Interrupt: 0b: Normal operation It can be cleared by reading this register 1b: Indicates that the VIN5 power fell below the UVLO input threshold or that the supplies have risen above the rising thresholds after a UVLO fault
1	ldo34_uvlo_int	0	R/C	 VIN34 Under-Voltage-Lock-Out Interrupt: 0b: Normal operation It can be cleared by reading this register 1b: Indicates that the VIN34 power fell below the UVLO input threshold or that the supplies have risen above the rising thresholds after a UVLO fault
0	ldo12_uvlo_int	0	R/C	 VIN12 Under-Voltage-Lock-Out Interrupt: 0b: Normal operation It can be cleared by reading this register 1b: Indicates that the VIN12 power fell below the UVLO input threshold or that the supplies have risen above the rising thresholds after a UVLO fault

• 0x18 UVP_STAU Register ---- LDO UVP Status Register. Default = 0x00

Bit	Name	Default	Туре	Description
7	Rev.	0	R	Reserved
6	6 Ido7 uvp stau	0	R	LDO7 UVP Status: 0b: Clear
				1b: Under-Voltage event occurred on LDO7 output while LDO7 is been commanded to be enabled.
5	ldo6_uvp_stau	0	R	LDO6 UVP Status: 0b: Clear 1b: Under-Voltage event occurred on LDO6 output while LDO6 is
				been commanded to be enabled.
4	ldo5_uvp_stau	0	R	LDO5 UVP Status: 0b: Clear 1b: Under-Voltage event occurred on LDO5 output while LDO5 is been commanded to be enabled.
3	ldo4_uvp_stau	0	R	LDO4 UVP Status: 0b: Clear 1b: Under-Voltage event occurred on LDO4 output while LDO4 is been commanded to be enabled.
2	ldo3_uvp_stau	0	R	LDO3 UVP Status: 0b: Clear 1b: Under-Voltage event occurred on LDO3 output while LDO3 is been commanded to be enabled.
1	ldo2_uvp_stau	0	R	LDO2 UVP Status: 0b: Clear 1b: Under-Voltage event occurred on LDO2 output while LDO2 is been commanded to be enabled.
0	ldo1_uvp_stau	0	R	LDO1 UVP Status: 0b: Clear 1b: Under-Voltage event occurred on LDO1 output while LDO1 is been commanded to be enabled.

• 0x19 OCP_STAU Register ---- LDO OCP Status Register. Default = 0x00

Bit	Name	Default	Туре	Description
7	Rev.	0	R	Reserved
6	ldo7_ocp_stau	0	R	LDO7 OCP Status: 0b: Clear 1b: Over current event detected on the LDO7 output while LDO7 is been commanded to be enabled.

				1
			R	LDO6 OCP Status:
5	ldo6_ocp_stau	0		0b: Clear
5		0		1b: Over current event detected on the LDO6 output while LDO7
				is been commanded to be enabled.
				LDO5 OCP Status:
4	Ido E con stou	0	R	0b: Clear
4	ldo5_ocp_stau	0	ĸ	1b: Over current event detected on the LDO5 output while LDO5
				is been commanded to be enabled.
				LDO4 OCP Status:
3	Idad aan atau	0	R	0b: Clear
3	ldo4_ocp_stau	0	ĸ	1b: Over current event detected on the LDO4 output while LDO4
				is been commanded to be enabled.
				LDO3 OCP Status:
~	Ida 2. aan atau		Б	0b: Clear
2	ldo3_ocp_stau	0	R	1b: Over current event detected on the LDO3 output while LDO3
				is been commanded to be enabled.
				LDO2 OCP Status:
4	Ida Daanatau	0		0b: Clear
1	ldo2_ocp_stau	0	R	1b: Over current event detected on the LDO2 output while LDO2
				is been commanded to be enabled.
				LDO1 OCP Status:
~	lded on stars		_	0b: Clear
0	ldo1_ocp_stau	0	R	1b: Over current event detected on the LDO1 output while LDO1
				is been commanded to be enabled.

• 0x1A TSD_UVLO_STAU Register ---- TSD and UVLO Status Register. Default = 0x00

Bit	Name	Default	Туре	Description
				Thermal Shutdown Status:
7	tsd_stau	0	R	0b: Normal operation
				1b: A Thermal Shutdown event detected
				Thermal Warning Status:
6	ted wrp. etcu	0	R	0b: Normal operation
0	tsd_wrn_stau	0		1b: The temperature is above the thermal Warning threshold
				and shutdown is impending.
		0	R	VSYS Under-Voltage-Lock-Out Status:
5	5 vsys_uvlo_stau			0b: Normal operation
5				1b: Indicates that the VSYS power fell below the UVLO input
				threshold.
				VIN7 Under-Voltage-Lock-Out Status:
4	Ido7 undo otou	0	R	0b: Normal operation
4	ldo7_uvlo_stau			1b: Indicates that the VIN7 power fell below the UVLO input
				threshold while LDO7 is been commanded to be enabled.

			VIN6 Under-Voltage-Lock-Out Status:
Ido Gundo atou	0		0b: Normal operation
luoo_uvio_stau	0	ĸ	1b: Indicates that the VIN6 power fell below the UVLO input
			threshold while LDO6 is been commanded to be enabled.
			VIN5 Under-Voltage-Lock-Out Status:
Ide Curve ater	0	R	0b: Normal operation
Ido5_uvio_stau	0		1b: Indicates that the VIN5 power fell below the UVLO input
			threshold while LDO5 is been commanded to be enabled.
	0	R	VIN34 Under-Voltage-Lock-Out Status:
			0b: Normal operation
ldo34_uvlo_stau			1b: Indicates that the VIN34 power fell below the UVLO input
			threshold while LDO3 or LDO4 is been commanded to be
			enabled.
		R	VIN12 Under-Voltage-Lock-Out Status:
			0b: Normal operation
ldo12_uvlo_stau	0		1b: Indicates that the VIN12 power fell below the UVLO input
			threshold while LDO1 or LDO2 is been commanded to be
			enabled.
		ldo5_uvlo_stau 0 ldo34_uvlo_stau 0	Ido5_uvlo_stau 0 R Ido34_uvlo_stau 0 R

• 0x1B SUSD_STAU Register ---- LDO Suspend Status Register. Default = 0x00

Bit	Name	Default	Туре	Description
7	chip_susd_stau	0	R	Chip Suspension:0b: Chip normal state1b: The entire chip has been suspended due to a global fault condition
6	ldo7_susd_stau	0	R	LDO7 Output Suspended: 0b: LDO7 in normal state. 1b: LDO7 has been suspended due to a fault condition.
5	ldo6_susd_stau	0	R	LDO6 Output Suspended: 0b: LDO6 in normal state. 1b: LDO6 has been suspended due to a fault condition.
4	ldo5_susd_stau	0	R	LDO5 Output Suspended: 0b: LDO5 in normal state. 1b: LDO5 has been suspended due to a fault condition.
3	ldo4_susd_stau	0	R	LDO4 Output Suspended: 0b: LDO4 in normal state. 1b: LDO4 has been suspended due to a fault condition.
2	ldo3_susd_stau	0	R	LDO3 Output Suspended: 0b: LDO3 in normal state. 1b: LDO3 has been suspended due to a fault condition.

4			_	LDO2 Output Suspended:
1	ldo2_susd_stau	0	R	0b: LDO2 in normal state.
				1b: LDO2 has been suspended due to a fault condition.
				LDO1 Output Suspended:
0	ldo1_susd_stau	0	R	0b: LDO1 in normal state.
				1b: LDO1 has been suspended due to a fault condition.

• 0x1C UVP_INTMA Register ---- LDO UVP Interrupt MASK Register. Default = 0x00

Bit	Name	Default	Туре	Description
7	Rev.	0	R	Reserved
6	ldo7_uvp_mask	0	R/W	LDO7 UVP Mask: 0b: No masking of interrupt. 1b: INTN pin will not change states when LDO7 Under Voltage interrupt occurs
5	ldo6_uvp_mask	0	R/W	LDO6 UVP Mask: 0b: No masking of interrupt. 1b: INTN pin will not change states when LDO6 Under Voltage interrupt occurs
4	ldo5_uvp_mask	0	R/W	LDO5 UVP Mask: 0b: No masking of interrupt. 1b: INTN pin will not change states when LDO5 Under Voltage interrupt occurs
3	ldo4_uvp_mask	0	R/W	LDO4 UVP Mask: 0b: No masking of interrupt. 1b: INTN pin will not change states when LDO4 Under Voltage interrupt occurs
2	ldo3_uvp_mask	0	R/W	LDO3 UVP Mask: 0b: No masking of interrupt. 1b: INTN pin will not change states when LDO3 Under Voltage interrupt occurs.
1	ldo2_uvp_mask	0	R/W	LDO2 UVP Mask: 0b: No masking of interrupt. 1b: INTN pin will not change states when LDO2 Under Voltage interrupt occurs
0	ldo1_uvp_mask	0	R/W	LDO1 UVP Mask: 0b: No masking of interrupt. 1b: INTN pin will not change states when LDO1 Under Voltage interrupt occurs

• 0x1D OCP_INTMA Register ---- LDO OCP Interrupt MASK Register. Default = 0x00

Bit	Name	Default	Туре	Description
7	Rev.	0	R	Reserved
				LDO7 OCP Mask:
	ldo7_ocp_mask			0b: No masking of interrupt.
6		0	R/W	1b: INTN pin will not change states when LDO7 Over-Current
				interrupt occurs.
				LDO6 OCP Mask:
				0b: No masking of interrupt.
5	ldo6_ocp_mask	0	R/W	1b: INTN pin will not change states when LDO6 Over-Current
				interrupt occurs.
				LDO5 OCP Mask:
		_		0b: No masking of interrupt.
4	4 Ido5_ocp_mask	0	R/W	1b: INTN pin will not change states when LDO5 Over-Current
				interrupt occurs.
				LDO4 OCP Mask:
		0	R/W	0b: No masking of interrupt.
3	ldo4_ocp_mask			1b: INTN pin will not change states when LDO4 Over-Current
				interrupt occurs.
				LDO3 OCP Mask:
				0b: No masking of interrupt.
2	ldo3_ocp_mask	0	R/W	1b: INTN pin will not change states when LDO3 Over-Current
				interrupt occurs.
				LDO2 OCP Mask:
				0b: No masking of interrupt.
1	ldo2_ocp_mask	0	R/W	1b: INTN pin will not change states when LDO2 Over-Current
				interrupt occurs.
				LDO1 OCP Mask:
				0b: No masking of interrupt.
0	ldo1_ocp_mask	0	R/W	1b: INTN pin will not change states when LDO1 Over-Current
	_ '_ ''			interrupt occurs.

• 0x1E TSD_UVLO_INTMA Register ---- TSD and UVLO Interrupt MASK Register. Default = 0x00

Bit	Name	Default	Туре	Description
				Thermal Shutdown Mask:
7 tsd mask	0	R/W	0b: No masking of interrupt.	
	tsu_mask	0	1.7.4.4	1b: INTN pin will not change states when a Thermal Shutdown
				interrupt occurs.

				Thermal Warning Mask:
6	tsd_wrn_mask	0	R/W	_
				0b: No masking of interrupt.
				1b: INTN pin will not change states when a Thermal Shutdown
				Warning interrupt occurs.
5	vsys_uvlo_mask	0	R/W	VSYS Under-Voltage-Lock-Out Mask:
				0b: No masking of interrupt
				1b: INTN pin will not change states when VSYS Input Power
				Under Voltage interrupt occurs.
	ldo7_uvlo_mask	0	R/W	VIN7 Under-Voltage-Lock-Out Mask:
4				0b: No masking of interrupt
4				1b: INTN pin will not change states when VIN7 Input Power
				Under Voltage interrupt occurs.
	ldo6_uvlo_mask	0	R/W	VIN6 Under-Voltage-Lock-Out Mask:
~				0b: No masking of interrupt
3				1b: INTN pin will not change states when VIN6 Input Power
				Under Voltage interrupt occurs.
	ldo5_uvlo_mask	0	R/W	VIN5 Under-Voltage-Lock-Out Mask:
_				0b: No masking of interrupt
2				1b: INTN pin will not change states when VIN5 Input Power
				Under Voltage interrupt occurs.
	ldo34_uvlo _mask	0	R/W	VIN34 Under-Voltage-Lock-Out Mask:
				0b: No masking of interrupt
1				1b: INTN pin will not change states when VIN34 Input Power
				Under Voltage interrupt occurs.
	ldo12_uvlo _mask	0	R/W	VIN12 Under-Voltage-Lock-Out Mask:
				0b: No masking of interrupt
0				1b: INTN pin will not change states when VIN12 Input Power
				Under Voltage interrupt occurs.

Symbol	Parameters (Items)	Value	Unit
Vpower	V _{SYS} , V _{IN12} , V _{IN34} , V _{IN5} , V _{IN6} , V _{IN7} , LDO1~7 POWER IN/OUT Pins Voltage	-0.3 to 6	V
VCONTROL	SDA, SCL and RESET_N Pins Voltage	-0.3 to 6	V
Vintn	INTN Pin Voltage	-0.3 to 6	V
P _D ⁽¹⁾⁽²⁾	Maximum Power Consumption, T _A =25°C	1500	mW
R _{0JA} ⁽¹⁾	Thermal Resistance, Junction-to-Ambient, T _A =25°C	67	°C/W
TJ	Operating Junction Temperature	-40 to 150	°C
Тѕтс	Storage Temperature	-65 to 150	°C
Tslod	Lead Temperature (Soldering, 10 sec)	300	°C
V _{ESD} ⁽³⁾	HBM	±2000	V
VESD	CDM		V

Absolute Maximum Ratings

Note (1): PD and $R_{\theta JA}$ are measured under natural convection (still air) at $T_A = 25^{\circ}C$ with the component mounted on 101.5*114.5mm FR-4, 4layer, Top and Bottom layer 1.5oz, both two inner layer 1oz. Meet JEDEC (JESD51-9) standard.

Note (2): Recommended operating conditions are only used to limit the reasonable use range of the single condition of the product, and the circuit use must comply with other instructions in the manual. For parameter performance indicators, please refer to the EC table and the test condition specification in the table.

Power Dissipation

Note (3): This device series incorporates ESD protection and is tested by the following methods:

HBM tested per EIA/JESD22-A114 CDM tested per EIA/JESD22-C101

Recommended Operating Conditions

Symbol	Parameters	Rating	Unit
V _{VSYS}	Supply Input Voltage	2.7 to 5.5	V
V _{VIN12}	Supply Input Voltage	0.6 to 2.0	V
V _{VIN34}	Supply Input Voltage	1.8 to 5.5 & ≤V _{SYS}	V
V _{VIN5}	Supply Input Voltage	1.8 to 5.5 & ≤V _{SYS}	V
Vvin6	Supply Input Voltage	1.8 to 5.5 & ≤V _{SYS}	V
Vvin7	Supply Input Voltage	1.8 to 5.5 & ≤V _{SYS}	V
LDO3~7	Output Current(600mA LDO)	0 to 600	mA
ILDO1/2	Output Current(1500mA LDO)	0 to 1500	mA
TA	Operating Ambient Temperature	-40 to 85	°C
Cvin12	Effective Input Ceramic Capacitor Value	4.7 to 47	uF
Cvsys/Cvin34/ Cvin5/Cvin6/Cvin7	Effective Input Ceramic Capacitor Value	0.68 to 10	uF
CVREF	Effective Bypass Ceramic Capacitor Value	0 to 1	uF
CLDO1/2	Effective Output Ceramic Capacitor Value (1500mA LDO)	4.7 to 22	uF
C LDO3~7	Effective Output Ceramic Capacitor Value (600mA LDO)	1 to 10	uF
ESR	Input and Output Capacitor Equivalent Series Resistance (ESR) 5 to 100		mΩ
Electrical Characteristics

(Unless otherwise noted, $V_{VIN12}=V_{LDO1/2}+0.25V$, $V_{VSYS}=(V_{LDO1/2}+1.6V)$ or 2.7V whichever greater, $I_{OUT}=1mA$, $C_{VIN12}=10\mu$ F, $C_{VSYS}=C_{VIN34}=C_{VIN5}=C_{VIN6}=C_{VIN7}=1u$ F, $C_{LDO1}=C_{LDO2}=10\mu$ F, $C_{LDO3}=C_{LDO4}=C_{LDO5}=C_{LDO6}=C_{LDO7}=2.2\mu$ F, $C_{VREF}=0.1\mu$ F, $T_{A}=-40^{\circ}C$ ~85°C. Typical values are at $T_{A}=25$ °C, $V_{VSYS}=3.8V$; $V_{VIN12}=1.45V$; V_{VIN34} , V_{VIN5} , V_{VIN6} , $V_{VIN7}=3.8V$; $V_{LDO1/2}=1.2V$, $V_{LDO3/4/5/6/7}=2.8V$.)

Symbol	Parameters	Conditions	Min	Тур	Max	Unit
V _{VIN12}	VIN12 Input Voltage Range	V _{VIN12} >(V _{LDO1/2} +V _{DROP_LDO1/2})	0.6		2.0	V
V _{VIN34} ⁽⁴⁾ , V _{VIN5} ⁽⁴⁾ , V _{VIN6} ⁽⁴⁾ , V _{VIN7} ⁽⁴⁾	VIN34, VIN5, VIN6, VIN7 Input Voltage Range		1.8		5.5	V
V _{VSYS} ⁽⁵⁾	VSYS Voltage Range	V _{LDO1/2} +1.6V, V _{VSYS} ≥2.7V	2.7		5.5	V
M	VSYS Under-voltage	Rising, T _A =25 °C	2.1	2.3	2.7	V
V UVLO_VSYS	Lock-out	Falling, T _A =25 ⁰C	1.9	2.1	2.3	V
	VIN12 Under-voltage	Rising	0.4	0.5	0.6	V
V UVLO_VIN12	Lock-out	Falling	0.3	0.4	0.5	V
Vuvlo_vin34,		Rising	1.55	1.7	1.85	V
V uvlo_vin5, V uvlo_vin6, V uvlo_vin7	VIN34, VIN5, VIN6, VIN7 Under-voltage Lock-out	Falling	1.5	1.6	1.75	V
VVREF	Reference voltage	V _{RESET_N} =High	1.12	1.22	1.32	V
Ις_ον ⁽⁸⁾	V _{VSYS} Current when all LDO enabled	V _{RESET_N} =High and enable all LDO by I ² C, no load	80	120	180	μA
Iq_off ⁽⁸⁾⁽⁹⁾	V _{VSYS} Current when all LDO disabled and VRESET_N=0V (System shutdown)	V _{RESET_N} =0V	0.01	1.5	3	μA
I _{Q_STB} ⁽⁸⁾ (9)	V _{VSYS} Current when all LDO disabled (System standby)	V _{RESET_N} =V _{VSYS} and disable all LDO by I ² C	10	15	45	μA
IRESET_N	RESET_N pull down Current	Vreset_n=5.5V, Vvsys=5.5V	0.01	0.3	1	μA
Vreset_nh	RESET_N Input Voltage High		0.9			V
$V_{\text{RESET_NL}}$	RESET_N Input Voltage Low				0.4	V
VI2CH	SCL/SDA Input Voltage High		0.9			V
V _{I2CL}	SCL/SDA Input Voltage Low				0.4	V

(Unless otherwise noted, $V_{VIN12}=V_{LDO1/2}+0.25V$, $V_{VSYS}=(V_{LDO1/2}+1.6V)$ or 2.7V whichever greater, $I_{OUT}=1mA$, $C_{VIN12}=10\mu$ F, $C_{VSYS}=C_{VIN34}=C_{VIN5}=C_{VIN6}=C_{VIN7}=1u$ F, $C_{LDO1}=C_{LDO2}=10\mu$ F, $C_{LDO3}=C_{LDO4}=C_{LDO5}=C_{LDO6}=C_{LDO7}=2.2\mu$ F, $C_{VREF}=0.1\mu$ F, $T_{A}=-40^{\circ}C\sim85^{\circ}C$. Typical values are at $T_{A}=25^{\circ}C$, $V_{VSYS}=3.8V$; $V_{VIN12}=1.45V$; V_{VIN34} ,

CLD07=2.2μF, CVREF=0.1μF, TA=-40°C~85°C. Typical values are at TA=25°C, VVSYS=3.8V; VVIN12=1.45V; VVIN34, VVIN5, VVIN6, VVIN7=3.8V; VLD01/2=1.2V, VLD03/4/5/6/7=2.8V.)

Symbol	Parameters	Conditions	Min	Тур	Max	Unit
Vol	SDA Logic	3mA Sink			0.4	V
VOL	Low Output				0.4	v
	INTN Output	10mA Sink			0.3	V
Vol_intn	Low Voltage	TOTTA SITK			0.5	v
Voh_intn	INTN Output	I _{OUT} = 10mA	1.0	1.2		V
	High Voltage		1.0	1.2		v
T _{TSD} (6)	Thermal Shutdown	TJ rising	130	145	165	°C
TISD	Threshold		150	140	100	C
Т _{HYS_TSD} ⁽⁶⁾	Thermal Shutdown	TJ falling from shutdown		25		°C
THYS_ISD'	Hysteresis			25		C
T _{TSB} (6)	Thermal Warning	TJrising		125		°C
I ISBY /	Threshold	i j nsing		125		C
Тнуѕ_тѕв ⁽⁶⁾	Thermal Warning		25		°C	
THYS_ISB	Hysteresis			25		C

1500mA LDO1/2

Symbol	Parameters	Conditions	Min	Тур	Мах	Unit
Vout1/2	Output range		0.496		1.8	V
		Iouт=1mA~1500mA, T _A =25⁰C, Vouт>0.8V	-1.0		1.0	%
VLDO1/2	Output Voltage	I _{OUT} =10mA, T _A =-40°C~85°C V _{OUT} >0.8V	-1.5		1.5	%
		Iouт=10mA, T _A =-40°C~85°C Vouт≤0.8V	-12		12	mV
) ((7)	Dranaut Valtaga	Vsys>3V, Iout=500mA, Vout=1.2V		30	50	mV
Vdrop_ld01/2 ⁽⁷⁾	Dropout Voltage	Vsys>3V, Iout=1500mA, Vout=1.2V		100	180	
IQLD01/2_VSYS	V _{VSYS} Current when only LDO1 or LDO2 enabled	Only LDO1 or LDO2 on, no load. Current on VSYS		50	90	uA
IQLD01/2_VIN	V _{VIN12} Current when only LDO1 or LDO2 enabled	Only LDO1 or LDO2 on, no load. Current on VIN12		10	20	uA
IQ_OFF_LDO1/2	V _{VIN12} Current when LDO1 and LDO2 disabled	V _{VSYS} =3.8V, V _{VIN12} =1.45V, V _{RESET_N} =0V or Shutdown by I ² C		0.1	1	uA
IOUT_LDO1/2	Output Current		1500			mA

(Unless otherwise noted, $V_{VIN12}=V_{LDO1/2}+0.25V$, $V_{VSYS}=(V_{LDO1/2}+1.6V)$ or 2.7V whichever greater, $I_{OUT}=1mA$, $C_{VIN12}=10\mu$ F, $C_{VSYS}=C_{VIN34}=C_{VIN5}=C_{VIN6}=C_{VIN7}=1u$ F, $C_{LDO1}=C_{LDO2}=10\mu$ F, $C_{LDO3}=C_{LDO5}=C_{LDO6}=C_{LDO7}=2.2\mu$ F, $C_{VREF}=0.1\mu$ F, $T_{A}=-40^{\circ}$ C~85°C. Typical values are at $T_{A}=25$ °C, $V_{VSYS}=3.8V$; $V_{VIN12}=1.45V$; V_{VIN34} , V_{VIN5} , V_{VIN6} , $V_{VIN7}=3.8V$; $V_{LDO1/2}=1.2V$, $V_{LDO3/4/5/6/7}=2.8V$.)

Symbol	Parameters	Conditions	Min	Тур	Мах	Unit
I _{LIM_LDO1/2}	Current Limit	Default Ilimit register value, T _A =25⁰C	1600	2500	3500	mA
ISHORT_LDO1/2	Short Current Limit	Default Ilimit register value V _{LDO1/2} =0V, T _A =25ºC	350	550	750	mA
	OUTPUT Under	Falling, Vout=1.2V	87.5	90		%
UVPLD01/2	Voltage Protection	Rising, Vout=1.2V		95	97.5	V_target
TMRLD01/2	LDO1/2 Protection Timer	V_{OUT} =1.2V, Time between V_{OUT} forced to 0.9V and INIT going low	50	90	150	us
RegLOAD_LDO1/2	Load Regulation	1mA≤I _{0∪T} ≤1500mA		0.002	0.005	%/mA
	V _{VIN12} Line Regulation	V _{LD01/2} +0.25V≤V _{VIN12} ≤2V (I _{OUT} =1mA)		0.01	0.5	%/V
Regline_ldo1/2	V _{VSYS} Line Regulation	2.7V or (V _{LDO1/2} +1.6V) whichever greater <v<sub>VSYS<5.5V, V_{VIN12}=V_{LDO1/2}+0.25V, I_{OUT}=1mA</v<sub>		0.01	0.2	%/V
		V _{IN} to V _{OUT} , f=100Hz, Ripple 0.2Vp-p, I _{OUT} =30mA, V _{OUT} =1.2V, V _{VSYS} =3.8V		85		
		V _{IN} to V _{OUT} , f=1kHz, Ripple 0.2Vp-p, I _{OUT} =30mA, V _{OUT} =1.2V, V _{VSYS} =3.8V		80		
	Ripple Rejection (VviN12 to VouT1/2)	V _{IN} to V _{OUT} , f=10kHz, Ripple 0.2Vp-p, I _{OUT} =30mA, V _{OUT} =1.2V, V _{VSYS} =3.8V		60		
PSRR_LD01/2 ⁽⁶⁾		V _{IN} to V _{OUT} , f=100kHz, Ripple 0.2Vp-p, I _{OUT} =30mA, V _{OUT} =1.2V, V _{VSYS} =3.8V		40		dB
		V _{IN} to V _{OUT} , f=1MHz, Ripple 0.2Vp-p, I _{OUT} =30mA, V _{OUT} =1.2V, V _{VSYS} =3.8V		42		
	Ripple	V _{VSYS} to V _{LDO1/2} , f=1kHz, Ripple 0.2Vp-p, Ι _{OUT} =30mA, V _{OUT} =1.2V, V _{VSYS} =3.8V		85		
	Rejection (Vvsys to Vout1/2)	V _{VSYS} to V _{LDO1/2} , f=1MHz, Ripple 0.2Vp-p, I _{OUT} =30mA, V _{OUT} =1.2V, V _{VSYS} =3.8V		40		

(Unless otherwise noted, $V_{VIN12}=V_{LDO1/2}+0.25V$, $V_{VSYS}=(V_{LDO1/2}+1.6V)$ or 2.7V whichever greater, $I_{OUT}=1mA$, $C_{VIN12}=10\mu$ F, $C_{VSYS}=C_{VIN34}=C_{VIN5}=C_{VIN6}=C_{VIN7}=1u$ F, $C_{LDO1}=C_{LDO2}=10\mu$ F, $C_{LDO3}=C_{LDO5}=C_{LDO6}=C_{LDO7}=2.2\mu$ F, $C_{VREF}=0.1\mu$ F, $T_{A}=-40^{\circ}C$ ~85°C. Typical values are at $T_{A}=25$ °C, $V_{VSYS}=3.8V$; $V_{VIN12}=1.45V$; V_{VIN34} , V_{VIN5} , V_{VIN6} , $V_{VIN7}=3.8V$; $V_{LDO1/2}=1.2V$, $V_{LDO3/4/5/6/7}=2.8V$.)

Symbol	Parameters	Conditions	Min	Тур	Мах	Unit
e _{N_LDO1/2} ⁽⁶⁾	Output Noise	V _{VIN12} =1.45V, V _{OUT} =1.2V, V _{VSYS} =3.8V, I _{OUT} =30mA, f=10Hz to 100kHz		30	100	μV _{RMS}
Rlow_ld01/2	Output Auto Discharge Resistance at Off State	V _{RESET_N} =0V, or Shutdown by I ² C, I _{OUT} =10mA, T _A =25°C, V _{SYS} =3.8V, V _{IN12} =1.5V	80	150	250	Ω
Vtrln_ld01/2 ⁽⁶⁾	Line Transient	$V_{VIN12}=V_{LDO1/2}+0.3V \text{ to}$ $V_{LDO1/2}+1.5V\leq 2V \text{ in 10us, }I_{OUT}=1\text{mA},$ $T_{A}=25^{o}\text{C}$		5	10	
	(V _{VIN12} to V _{OUT1/2})	$V_{VIN12}=V_{LDO1/2}+1.5V \text{ to}$ $V_{LDO1/2}+0.3V \leq 2V \text{ in 10us, I}_{OUT}=1\text{mA},$ $T_{A}=25^{\circ}\text{C}$		5	10	mV
	Line	V _{SYS} =V _{OUT} +1.6 or 2.7V to V _{SYS} +1V, in 10us, T _A =25°C		5	10	
	Transient (Vvsys to Vout1/2)	V_{SYS} = V_{SYS} +1V to V_{OUT} +1.6 or 2.7V, in 10us, T_A =25°C		5	10	
Vtrld +ld01/2 ⁽⁶⁾	Load	I _{OUT} =1mA to 1500mA in 10us V _{VIN12} =V _{LDO1/2} +0.5V≤2V, T _A =25⁰C		50	100	mV
VIRLD_+LDOI/2	Transient	I _{OUT} =1500mA to 1mA in 10us V _{VIN12} =V _{LDO1/2} +0.5V≤2V, T _A =25⁰C		50	100	
ton_ldo1/2 ⁽⁶⁾⁽¹⁰⁾	Turn-On Time	V _{OUT} ≥0.8V From assertion of enable to V _{OUT} =95%V _{LDO1/2(NOM)}		250	900	μs

600mA LDO3/LDO4

Symbol	Parameters	Conditions	Min	Тур	Max	Unit
Vout3/4	Output range		1.380		3.412	V
		Iout=600mA, VLD03/4=1.5V		220	350	
		Iout=600mA, VLD03/4=1.8V		170	280	
) ((7)	Dranaut Valtaga	I _{OUT} =600mA, V _{LDO3/4} =2.2V		140	230	m) (
Vdrop_ldo3/4 ⁽⁷⁾	Dropout Voltage	I _{OUT} =600mA, V _{LDO3/4} =2.8V		110	180	mV
		I _{OUT} =600mA, V _{LDO3/4} =3.3V		100	180	
		I _{OUT} =600mA, V _{LDO3/4} =3.412V		100	180	

(Unless otherwise noted, $V_{VIN12}=V_{LDO1/2}+0.25V$, $V_{VSYS}=(V_{LDO1/2}+1.6V)$ or 2.7V whichever greater, $I_{OUT}=1mA$, $C_{VIN12}=10\mu$ F, $C_{VSYS}=C_{VIN34}=C_{VIN5}=C_{VIN5}=C_{VIN7}=1u$ F, $C_{LDO1}=C_{LDO2}=10\mu$ F, $C_{LDO3}=C_{LDO4}=C_{LDO5}=C_{LDO6}=C_{LDO7}=2.2\mu$ F, $C_{VREF}=0.1\mu$ F, $T_{A}=-40^{\circ}C$ ~85°C. Typical values are at. $T_{A}=25$ °C, $V_{VSYS}=3.8V$; $V_{VIN12}=1.45V$; V_{VIN34} , V_{VIN5} , V_{VIN6} , $V_{VIN7}=3.8V$; $V_{LDO1/2}=1.2V$, $V_{LDO3/4/5/6/7}=2.8V$.)

Symbol	Parameters	Conditions	Min	Тур	Мах	Unit		
N/	Regulated Output	Iout=1mA~600mA, TA=25°C	-2		2	%		
Vldo3/4	Voltage	I _{OUT} =1mA, Τ _A =-40°C~85°C	-2		2	70		
		V _{LDO3/4} =2.8V 3.3V≤V _{VIN34} ≤5.5V,						
Regline_ldo3/4	Output Voltage Line Regulation	I _{OUT} =10mA		0.01	0.2	%/V		
		$(\Delta V_{LDO3/4}/\Delta V_{VIN34}/V_{LDO3/4})$						
Regload_ldo3/4	Output Voltage	IOUT from 1mA to 600mA		0.002	0.005	%/mA		
	Load Regulation	$\Delta V_{LDO3/4}$		0.002	0.003	70/THA		
		VLD03/4=2.8V, IOUT=1mA,		5	20			
	Line Transient	V_{VIN34} =3.8V to 5.5V in 10us, TA=25°C		5	20			
	(The absolute	VLD03/4=2.8V, IOUT=1mA, VVIN34=5.5V		5	20			
	value of the	to 3.8V in 10us, T _A =25°C		5	20			
	output change)	Iout=1mA, V_{VIN34} =Vout+1 to 5.5V at		5	5	5	35	
Vtrln_ld03/4 ⁽⁶⁾	(V _{VIN34} to V _{OUT3/4})	10us/V, T _A =25°C		0	00			
	(••••••••••••••••••••••••••••••••••••••	I_{OUT} =1mA, V_{VIN34} =5.5V to V_{OUT} +1 at		5	35	mV		
		10us/V, T _A =25°C		0	00	_		
	Line Transient	Iout=1mA, Vsys=3.8V to 4.8V in 10us,		5	10			
	(The absolute	T _A =25°C		5	10			
	value of the	Iout=1mA, Vsys=4.8V to 3.8V in 10us,						
	output change)	T _A =25°C		5	10			
	(V _{VSYS} to V _{OUT3/4})							
	Load Transient	$V_{LDO3/4}=2.8V$, $V_{VIN34}=3.8V$, I_{OUT} from		50	100			
Vtrld_ld03/4 ⁽⁶⁾	(The absolute	1mA to 600mA in 10us, T _A =25°C			100	mV		
	value of the	VLD03/4=2.8V, VVIN34=3.8V, IOUT from		30	60			
	output change)	600mA to 1mA in 10us, T _A =25°C						
	V _{VSYS} Current	Only LDO3 or LDO4 on, no load.						
IQLDO3/4_VSYS	when only LDO3	Current on VSYS		20	60	uA		
	or LDO4 enabled							
	V _{VIN34} Current	Only LDO3 or LDO4 on, no load.				_		
IQLD03/4_VIN	when only LDO3	Current on VIN34		16	30	uA		
	or LDO4 enabled					ļ		
Iq_off_ld03/4	V _{VIN34} Current	$V_{VSYS}=V_{VIN3/4}=3.8V, V_{RESET_N}=0V$				_		
	when LDO3 and	or Shutdown by I ² C		0.1	1	uA		
	LDO4 disabled							
Iout_ldo3/4	Output Current		600			mA		
ILMT_LDO3/4	Over Current Limit	Default llimit register value,	650	950	1500	mA		
		$V_{VIN34}=V_{LDOx_VSET}+1V, T_A=25^{\circ}C$			1000			

 $(Unless otherwise noted, V_{VIN12}=V_{LDO1/2}+0.25V, V_{VSYS}=(V_{LDO1/2}+1.6V) \text{ or } 2.7V \text{ whichever greater, } I_{OUT}=1mA, C_{VIN12}=10\muF, C_{VSYS}=C_{VIN34}=C_{VIN5}=C_{VIN5}=C_{VIN7}=1uF, C_{LDO1}=C_{LDO2}=10\muF, C_{LDO3}=C_{LDO4}=C_{LDO5}=C_{LDO6}=C_{LDO7}=2.2\muF, C_{VREF}=0.1\muF, T_{A}=-40^{\circ}C\sim85^{\circ}C. \text{ Typical values are at. } T_{A}=25^{\circ}C, V_{VSYS}=3.8V; V_{VIN12}=1.45V; V_{VIN34}, V_{VIN5}, V_{VIN6}, V_{VIN7}=3.8V; V_{LDO1/2}=1.2V, V_{LDO3/4/5/6/7}=2.8V.)$

Symbol	Parameters	Conditions	Min	Тур	Мах	Unit
ISHORT_LDO3/4	Short Current Limit	Default llimit register value, V _{LDO3/4} =0V, T _A =25ºC	60	95	150	mA
UVP _{LDO3/4}	OUTPUT Under Voltage	Falling, Vout=2.8V @Vvsys-Vout>1.1V	77	80		% V _{target}
U UU03/4	Protection	Rising, Vout=2.8V @Vvsys-Vout>1.1V		90	93	% V _{target}
TMR _{LDO3/4}	LDO3/4 Protection Timer	Vout=2.8V, Time between Vout forced to 2.2V and INIT going low	50	90	150	us
e _N ⁽⁶⁾	Output Noise	10Hz to 100kHz, Iout=30mA, VLD03/4=2.8V, V _{VSYS} =V _{VIN34} =3.8V, CLD03~4=2.2µF, TA=25°C		10	100	µVrмs
		f=1kHz, $C_{LDO3/4}$ =2.2µF, I _{OUT} =100mA, V _{VSYS} =V _{LDOX_VSET} +1V, T _A =25°C		90		
	Power Supply	f=10kHz, C _{LDO3/4} =2.2µF, Iout=100mA, Vvsys=V _{LDOX_} vset+1V, T _A =25°C		80		
	Rejection Ratio (Vvin34 to Vout3/4)	f=100kHz, C _{LDO3/4} =2.2µF, Iout=100mA V _{VSYS} =V _{LDOx_VSET} +1V, T _A =25°C		60		
PSRR_LDO3/4 ⁽⁶⁾		f=1MHz, C _{LDO3/4} =2.2µF, I _{OUT} =100mA, V _{VSYS} =V _{LDOX_VSET} +1V, T _A =25°C		45		dB
	Power Supply	Vvsys to Vldo3/4, f=1kHz, Cldo3/4=2.2µF, lout=100mA Vvsys=Vldox_vset+1V, Ta=25°C		105		
	Rejection Ratio (Vvsys to Vout3/4)	V _{VSYS} to V _{LDO3/4} , f=1MHz, C _{LDO3/4} =2.2µF, I _{OUT} =100mA V _{VSYS} =V _{LDOX_VSET} +1V, T _A =25°C		60		
RLOW_LDO3/4	Output Resistance of Auto Discharge at Off State	$V_{SYS}=V_{IN34}=3.8V$, $V_{RESET_N}=0V$, or Shutdown by I ² C, I _{OUT} =10mA, T _A =25 °C	80	150	250	Ω
ton_ldo3/4 ⁽⁶⁾⁽¹⁰⁾	Output Turn-on Delay Time	From enable to V _{OUT} =95% of Vout(NOM)		250	900	us

(Unless otherwise noted, V_{VIN12}=V_{LD01/2}+0.25V, V_{VSYS}=(V_{LD01/2}+1.6V) or 2.7V whichever greater, I_{0UT}=1mA,

 $C_{VIN12}=10\mu F, \quad C_{VSYS}=C_{VIN34}=C_{VIN5}=C_{VIN6}=C_{VIN7}=1uF, \quad C_{LD01}=C_{LD02}=10\mu F, \quad C_{LD03}=C_{LD04}=C_{LD05}=C_{LD06}=C_{LD07}=2.2\mu F, \quad C_{VREF}=0.1\mu F, \quad T_{A}=-40^{\circ}C \sim 85^{\circ}C. \quad Typical \ values \ are \ at. \quad T_{A}=25^{\circ}C, \quad V_{VSYS}=3.8V; \quad V_{VIN12}=1.45V; \quad V_{VIN34}, \quad V_{VIN5}, \quad V_{VIN6}, \quad V_{VIN7}=3.8V; \quad V_{LD01/2}=1.2V, \quad V_{LD03/4/5/6/7}=2.8V.)$

600mA LDO5~LDO7

Symbol	Parameters	Conditions	Min	Тур	Max	Unit
V _{OUT5~7}	Output range		1.380		3.412	V
		Iout=600mA, VLD03/4=1.5V		220	350	
		Iout=600mA, VLD03/4=1.8V		170	280	
Vdrop_ld05~7 ⁽⁷⁾		I _{OUT} =600mA, V _{LDO3/4} =2.2V		140	230	m)/
	Dropout Voltage	I _{OUT} =600mA, V _{LDO3/4} =2.8V		110	180	mV
		Iout=600mA, VLD03/4=3.3V		100	180	
		Iout=600mA, VLD03/4=3.412V		100	180	
Maria	Regulated Output	I _{OUT} =1mA~600mA,T _A =25°C	-2		2	%
Vldo5~7	Voltage	Іоит=1mA~600mA, Т _А =-40°C~85°С	-2		2	%
RegLINE_LD05~7	Output Voltage Line Regulation	V _{LDO5~7} =2.8V 3.3V≤V _{VIN5~7} ≤5.5V, I _{OUT} =10mA (ΔV _{LDO5~7} /ΔV _{VINX} /V _{LDO5~7})		0.01	0.2	%/V
Regload_ldo5~7	Output Voltage Load Regulation	I _{OUT} from 1mA to 600mA ΔV _{LDO5~7}		0.002	0.005	%/mA
	Line Transient (The absolute value of the output change) (V _{VIN5~7} to V _{OUT5~7})	V _{LDO5~7} =2.8V, I _{OUT} =1mA, V _{VIN5~7} =3.8V to 5.5V in 10us, T _A =25°C		5	20	
		V _{LDO5~7} =2.8V, I _{OUT} =1mA, V _{IN5~7} =5.5V to 3.8V in 10us, T _A =25°C		5	20	
Vtrln_ld05~7 ⁽⁶⁾		Iou⊤=1mA, Vvi№-7=Vouт+1 to 5.5V at 10us/V, Ta=25°C		5	35	mV
		louт=1mA, V _{VIN5~7} =5.5V to Vouт+1 at 10us/V, T _A =25°C		5	35	
	Line Transient (The absolute value of the	I _{OUT} =1mA, V _{SYS} =3.8V to 4.8V in 10us, T _A =25°C		5	10	
	output change) (V _{VSYS} to V _{OUT5~7})	Iouт=1mA, Vsys=4.8V to 3.8V in 10us, Ta=25°С		5	10	

(Unless otherwise noted, V_{VIN12}=V_{LDO1/2}+0.25V, V_{VSYS}=(V_{LDO1/2}+1.6V) or 2.7V whichever greater, I_{OUT}=1mA, C_{VIN12}=10μF, C_{VSYS}=C_{VIN34}=C_{VIN5}=C_{VIN6}=C_{VIN7}=1uF, C_{LDO1}=C_{LDO2}=10μF, C_{LDO3}=C_{LDO4}=C_{LDO5}=C_{LDO6}= C_{LDO7}=2.2μF, C_{VREF}=0.1μF, T_A=-40°C~85°C. Typical values are at. T_A=25 °C, V_{VSYS}=3.8V; V_{VIN12}=1.45V; V_{VIN34}, V_{VIN5}, V_{VIN6}, V_{VIN7}=3.8V; V_{LDO1/2}=1.2V, V_{LDO3/4/5/6/7}=2.8V.)

Symbol	Parameters	Conditions	Min	Тур	Max	Unit
) ((6)	Load Transient (The absolute	V _{LD05-7} =2.8V, V _{VSYS} =3.8V, I _{OUT} from 1mA to 600mA in 10us, T _A =25°C		50	100	
Vtrld_ld05~7 ⁽⁶⁾	value of the output change)	V _{LD05-7} =2.8V, V _{VSYS} =3.8V, I _{OUT} from 600mA to 1mA in 10us, T _A =25°C		30	60	mV
IQLDO=5~7_VSYS	V _{VSYS} Current when only LDO5 or LDO6 or LDO7 enabled	Only LDO5 or LDO6 or LDO7 on, no load. Current on VSYS		30	60	uA
IQ _{LDO=5~7_VIN}	V _{VIN5∼7} Current when only LDO5 or LDO6 or LDO7 enabled	Only LDO5 or LDO6 or LDO7 on, no load. Current on VIN5/VIN6/VIN7		16	30	uA
Iq_off_ld05~7	V _{VIN5~7} Current when LDO5 and LDO6 and LDO7 disabled	V _{VSYS} =V _{VIN5~7} =3.8V, V _{RESET_N} =0V or Shutdown by I ² C		0.1	1	uA
I _{OUT_LDO5~7}	Output Current		600			mA
Ilmt_ld05~7	Over Current Limit	Default Ilimit register value, V _{VIN5/6/7} =V _{LDOx_VSET} +1V, T _A =25ºC	650	950	1500	mA
ISHORT_LDO5~7	Short Current Limit	Default Ilimit register value, V _{LDO5~7} =0V, T _A =25ºC	60	95	150	mA
	OUTPUT Under	Falling, V _{OUT} =2.8V @V _{VSYS} -V _{OUT} >1.1V	77	80		% V_target
UVP LD05~7	Voltage Protection	Rising, V _{OUT} =2.8V @V _{VSYS} -V _{OUT} >1.1V		90	93	% V_target
TMR LD05~7	LDO5~7 Protection Timer	Vout=2.8V, Time between Vout forced to 2.2V and INIT going low	50	90	150	us
en ⁽⁶⁾	Output Noise	10Hz to 100kHz, I _{OUT} =30mA, V _{LDO5-7} =2.8V, V _{VSYS} = V _{VIN5-7} =3.8V, C _{LDO5-7} =2.2μF, T _A =25°C		10	100	μVrms

(Unless otherwise noted, VvIN12=VLD01/2+0.25V, VvSYS=(VLD01/2+1.6V) or 2.7V whichever greater, IouT=1mA,

 $C_{VIN12}=10\mu F, \quad C_{VSYS}=C_{VIN34}=C_{VIN5}=C_{VIN6}=C_{VIN7}=1uF, \quad C_{LD01}=C_{LD02}=10\mu F, \quad C_{LD03}=C_{LD04}=C_{LD05}=C_{LD06}=C_{LD07}=2.2\mu F, \quad C_{VREF}=0.1\mu F, \quad T_{A}=-40^{\circ}C-85^{\circ}C. \quad Typical \ values \ are \ at. \quad T_{A}=25^{\circ}C, \quad V_{VSYS}=3.8V; \quad V_{VIN12}=1.45V; \quad V_{VIN34}, \quad V_{VIN5}, \quad V_{VIN6}, \quad V_{VIN7}=3.8V; \quad V_{LD01/2}=1.2V, \quad V_{LD03/4/5/6/7}=2.8V.)$

Symbol	Parameters	Conditions	Min	Тур	Max	Unit
		f=1kHz, C _{LDO5~7} =2.2µF,				
		I _{OUT} =100mA,		90		
		Vvsys=Vldox_vset+1V, Ta=25°C				
		f=10kHz, C _{LD05~7} =2.2µF,				
	Power Supply	Ι _{Ουτ} =100mΑ,		80		
	,	$V_{VSYS}=V_{LDOx_VSET}+1V, T_A=25^{\circ}C$				
	Rejection Ratio (V _{VIN5~7} to V _{OUT5~7})	$f=100kHz, C_{LDO5\sim7}=2.2\mu F,$				
		Ι _{Ουτ} =100mA,		60		
PSRR_LD05~7 ⁽⁶⁾		Vvsys=Vldox_vset+1V, Ta=25°C				dB
FONT_LD05~7		$f=1MHz, C_{LDO5\sim7}=2.2\mu F,$				чD
		Ι _{Ουτ} =100mA,		45		
		Vvsys=Vldox_vset+1V, Ta=25°C				
		V_{VSYS} to $V_{LDO5\sim7}$, f=1kHz,				
	Power Supply	$C_{LDO5\sim7}=2.2\mu F$, $I_{OUT}=100mA$		105		
	Rejection Ratio	Vvsys=Vldox_vset+1V, Ta=25°C				
	(Vvsys to Vout5~7)	V _{VSYS} to V _{LDO5~7} , f=1MHz,				
		$C_{\text{LDO5-7}}=2.2\mu F, I_{\text{OUT}}=100 mA$		60		
		Vvsys=Vldox_vset+1V, Ta=25°C				
Rlow_ld05~7	Output Resistance	$V_{\text{SYS}}=V_{\text{IN5}\sim7}=3.8V,~V_{\text{RESET}_N}=0V,~or$				
	of Auto Discharge	Shutdown by I ² C, IOUT=10mA,	80	150	250	Ω
	at Off State	T _A =25°C				
ton 1005. 7(6)(10)	Output Turn-on	From enable to V_{OUT} =95% of		250	900	us
ton_ldo5~7 ⁽⁶⁾⁽¹⁰⁾	Delay Time	Vout(NOM)		200	900	us

Note (4): Here V_{VINx} means internal circuit can work normal. If $V_{VINx} < V_{LDOx}$, Output voltage follow V_{VINx} (I_{OUT}=1mA), circuit is safety.

Note (5): Here V_{VSYS}>V_{UVLO_VSYS} means internal control circuit can work normal. If V_{VSYS}<2.7V or

 $V_{VSYS} < V_{LDO1/2}$ +1.6V, some performance parameters cannot be guaranteed.

Note (6): Guaranteed by design and characterization. not a FT item.

Note (7): V_{DROP_LDOx} FT test method: test the V_{LDOx} voltage at V_{LDOx_vset} + $V_{DROPMAX}$ with output current. Guaranteed by design and characterization except VOUT=1.8V and VOUT=2.8V, not FT items.

Note (8): Since the power on process of VSYS needs a large current, the BIAS should have a current driving

capacity of more than 100mA.

Note (9): Please ensure individual LDO in the off state before vsys_en = 0 (0x03 LDO_EN Register: bit7).

Fast Mode I2C Specification

Symbol	Parameters	Min	Max	Unit
t1	SCL clock period, Recommended 50% duty.	0.96		us
t2	Data in set-up time to SCL high	100		ns
t3	Data out stable after SCL low	100		ns
t4	SDA low set-up time to SCL low (start)	100		ns
t5	SDA high hold time after SCL high (stop)	100		ns
Ci	SDA and SCL input capacitance	10		pF
Cb	The max load capacitance of SDA and SCL $(\mbox{I2C BUS})$		100	pF

Typical Characteristics

(Unless otherwise noted, $V_{VIN12}=V_{LD01/2}+0.25V$, $V_{VSYS}=(V_{LD01/2}+1.6V)$ or 2.7V whichever greater, $I_{OUT}=1mA$, $C_{VIN12}=10\mu$ F, $C_{VSYS}=C_{VIN34}=C_{VIN5}=C_{VIN6}=C_{VIN7}=1u$ F, $C_{LD01}=C_{LD02}=10\mu$ F, $C_{LD03}=C_{LD04}=C_{LD05}=C_{LD06}=C_{LD07}=2.2\mu$ F, $C_{VREF}=0.1\mu$ F, $T_{A}=-40^{\circ}C$ ~85°C. Typical values are at. $T_{A}=25^{\circ}C$, $V_{VSYS}=3.8V$; $V_{VIN12}=1.45V$;

(Unless otherwise noted, $V_{VIN12}=V_{LDO1/2}+0.25V$, $V_{VSYS}=(V_{LDO1/2}+1.6V)$ or 2.7V whichever greater, $I_{OUT}=1mA$, $C_{VIN12}=10\mu$ F, $C_{VSYS}=C_{VIN34}=C_{VIN5}=C_{VIN6}=C_{VIN7}=1u$ F, $C_{LDO1}=C_{LDO2}=10\mu$ F, $C_{LDO3}=C_{LDO4}=C_{LDO5}=C_{LDO6}=C_{LDO7}=2.2\mu$ F, $C_{VREF}=0.1\mu$ F, $T_{A}=-40^{\circ}C\sim85^{\circ}C$. Typical values are at. $T_{A}=25^{\circ}C$, $V_{VSYS}=3.8V$; $V_{VIN12}=1.45V$;

 $(Unless otherwise noted, V_{VIN12}=V_{LDO1/2}+0.25V, V_{VSYS}=(V_{LDO1/2}+1.6V) \ or \ 2.7V \ whichever \ greater, \ I_{OUT}=1mA, C_{VIN12}=10\mu F, C_{VSYS}=C_{VIN34}=C_{VIN5}=C_{VIN6}=C_{VIN7}=1uF, \ C_{LDO1}=C_{LDO2}=10\mu F, \ C_{LDO3}=C_{LDO4}=C_{LDO5}=C_{LDO6}=C_{LDO7}=2.2\mu F, \ C_{VREF}=0.1\mu F, \ T_{A}=-40^{\circ}C\sim85^{\circ}C. \ Typical \ values \ are \ at. \ T_{A}=25^{\circ}C, \ V_{VSYS}=3.8V; \ V_{VIN12}=1.45V; V_{VIN34}, \ V_{VIN5}, \ V_{VIN6}, \ V_{VIN7}=3.8V; \ V_{LDO1/2}=1.2V, \ V_{LDO3/4/5/6/7}=2.8V.)$

 $(Unless otherwise noted, V_{VIN12}=V_{LDO1/2}+0.25V, V_{VSYS}=(V_{LDO1/2}+1.6V) \text{ or } 2.7V \text{ whichever greater, } I_{OUT}=1mA, C_{VIN12}=10\mu\text{F}, C_{VSYS}=C_{VIN3}=C_{VIN5}=C_{VIN6}=C_{VIN7}=1u\text{F}, C_{LDO1}=C_{LDO2}=10\mu\text{F}, C_{LDO3}=C_{LDO4}=C_{LDO5}=C_{LDO6}=C_{LDO7}=2.2\mu\text{F}, C_{VREF}=0.1\mu\text{F}, T_{A}=-40^{\circ}\text{C} \sim 85^{\circ}\text{C}. \text{ Typical values are at. } T_{A}=25^{\circ}\text{C}, V_{VSYS}=3.8V; V_{VIN12}=1.45V;$

 $(Unless otherwise noted, V_{VIN12}=V_{LDO1/2}+0.25V, V_{VSYS}=(V_{LDO1/2}+1.6V) \text{ or } 2.7V \text{ whichever greater, } I_{OUT}=1mA, C_{VIN12}=10\mu\text{F}, C_{VSYS}=C_{VIN3}=C_{VIN5}=C_{VIN6}=C_{VIN7}=1u\text{F}, C_{LDO1}=C_{LDO2}=10\mu\text{F}, C_{LDO3}=C_{LDO4}=C_{LDO5}=C_{LDO6}=C_{LDO7}=2.2\mu\text{F}, C_{VREF}=0.1\mu\text{F}, T_{A}=-40^{\circ}\text{C} \sim 85^{\circ}\text{C}. \text{ Typical values are at. } T_{A}=25^{\circ}\text{C}, V_{VSYS}=3.8V; V_{VIN12}=1.45V;$

Application Circuits

Note *:

Resistances (VDD_IO=1.2V, R_PU=1.8K; VDD_IO=1.8V, R_PU=2.7K) are need to connect from DC power supply(VDD_IO) to SDA and SCL.

When INTN is Open drain output state, a resistance $(1.5K\Omega-10K\Omega)$ is need to connect to DC power supply(VDD_IO) and the voltage should be less than VSYS.

If need, a resistance (10KΩ-1MΩ) is need to connect from DC power supply(VDD_IO) to RESET_N. *Note* **:

If an LDO is not used, leave the input/output PIN suspended and the software enable bit is disabled. If INTN PIN is not used, leave the INTN PIN suspended.

ET5917

PCB Layout Guide

Package Dimension

Tape Information

Marking

Revision History and Checking Table

Version	Date	Revision Item	Modifier	Function & Spec Checking	Package & Tape Checking
1.0	2024-08-15	Version 1.0	Yang Xiao Xu	Liu Yi Guo	Yang Xiao Xu
1.1	2024-08-30	Update auto discharge function description	Yang Xiao Xu	Liu Yi Guo	Yang Xiao Xu
1.2	2024-08-30	Update Block Diagram	Yang Xiao Xu	Liu Yi Guo	Yang Xiao Xu
1.3	2024-10-22	Update VSYS Voltage	Yang Xiao Xu	Liu Yi Guo	Yang Xiao Xu