A Very Low-Dropout Regulator with 3A Load Current

General Description

The ET5C208M is a CMOS-based very low dropout voltage regulator, offering 3A with NMOS pass transistor and a separate bias supply voltage (V_{BIAS}). The device provides very stable, accurate output voltage with high ripple rejection and excellent full load transient performance. The ET5C208M consist of an accurate 0.8V internal voltage-reference, an error amplifier, an under-voltage lock-out (UVLO) block, an output current limit circuit and a thermal-shutdown circuit.

The ET5C208M can set the output voltage through external resistor divider with FB pin. A Power Good pin (PG) is also available. The ET5C208M is offered in ESOP8 package.

Features

- Output Current:3.0A
- Wide Input Voltage Range: 0.8V to 5.5V
- Wide BIAS Voltage Range: 2.2V to 5.5V
- Output Voltage Range: 0.8V to 3.6V (externally set)
- Dropout Voltage: 135mV at 3A
- Open Drain Power Good (PG) Output
- Excellent Transient Response
- Built-in Soft-start Function
- Built-in Current Limit and Thermal Shutdown Protection
- Package Information:

Part No.	Package	MSL
ET5C208M	ESOP8	Level 3

Applications

- Telecom Industrial and Consumer Equipment
- FPGA, DSP and Logic Power Supplies
- Switching Power Supply Post Regulation
- Specific Start-up Time or Sequencing Requirement Applications

Pin Configuration

Pin Function

Pin Name	Symbol	Pin Description
		Power-Good pin is an open-drain, active-high output that indicates the status of
1	PG	$V_{\text{OUT}}.$ A pull-up resistor form $10k\Omega$ to $1M\Omega$ should be connected to a supply and
		the PG pin can be left floating alternatively.
2	EN	Enable pin. Active high and this pin must not be left floating.
3	IN	Unregulated input voltage pin.
4	BIAS	Input voltage for internal control circuits.
5	NC	No connect pin.
6	OUT	Regulated output voltage.
7 50		Connecting to the center tap of an external resistor divider network that sets the
7	FB	output voltage. This pin must not be left floating.
8	GND	Ground pin.
Exposed Pad		Should be soldered to the ground plane for increasing thermal performance.

Block Diagram

Functional Description

The ET5C208M dual-rail very low dropout voltage regulator is using NMOS pass transistor for output voltage regulation from V_{IN} voltage. All the internal control circuit is powered by the BIAS voltage.

The use of an NMOS pass transistor offers several advantages in applications. Comparing to PMOS topology devices, the output capacitor has reduced impact on loop stability. The dropout voltage between V_{IN} and V_{OUT} can be very low compared with standard PMOS regulators in very low V_{IN} applications.

The ET5C208M offers smooth monotonic start-up. The controlled voltage rising limits the inrush current.

The Enable (EN) input is equipped with internal hysteresis and deglitch filter. An Open Drain Power Good (PG) output is available for V_{OUT} monitoring. When V_{OUT} exceeds the PG threshold, the PG pin goes into high-impedance state. When is below this threshold, the PG pin is set to low-impedance state.

The ET5C208M is an adjustable linear regulator. As shown in application circuit, the required output voltage can be adjusted by two external resistors with FB pin.

Dropout Voltage

There are two Dropout voltages specified.

Firstly, the V_{IN} Dropout voltage is the voltage difference between V_{IN} and V_{OUT} when V_{OUT} starts to decrease by 2%. V_{BIAS} is set to high enough, referring to the specific value in the Electrical Characteristics table.

Secondly, the V_{BIAS} dropout voltage is the voltage difference between V_{BIAS} and V_{OUT} when V_{IN} and V_{BIAS} pins are joined together and V_{OUT} starts to decrease by 2%.

Input and Output Capacitors

The device is designed to be stable for all available types and values of output capacitors $\ge 2.2 \mu$ F. The device is also stable with multiple capacitors in parallel, having the total effective capacitance in the specified range.

In applications where no low input supply impedance is available (PCB inductance in V_{IN} and/or V_{BIAS} inputs as an example) the recommended C_{IN} and C_{BIAS} value is 1μ F or greater.

Ceramic or other low ESR capacitors are recommended. For the best performance all capacitors should be connected to the ET5C208M respective pins directly in the device PCB copper layer, not through via having not negligible impedance.

Enable Operation

The ET5C208M is turned on by setting the enable pin to High. The threshold limits are covered in the electrical characteristics table in this datasheet. When the enable function is not to be used then the pin should be connected to V_{IN} or V_{BIAS} .

Output Voltage Adjust

The output voltage can be adjusted from 0.8 V to 3.6 V using resistors divider between the output and the FB input. The output voltage can be calculated by:

V_{OUT}=0.8×(1+R1/R2)

For example: choose $R_1=2.49k\Omega$, $R_2=4.99k\Omega$, $V_{OUT}=1.2V$

Current Limitation

When output current of V_{OUT} pin is higher than current limit threshold or the V_{OUT} pin is direct short to GND, the current limit protection will be triggered and clamp the output current at a predesigned level to prevent over-current and thermal damage.

Thermal Protection

Thermal protection disables the output when the junction temperature rises to approximately +155° C, allowing the device to cool down. When the junction temperature reduces to approximately +125° C the output circuit is enabled again. Depending on power dissipation, thermal resistance, and ambient temperature, the thermal protection circuit may cycle on and off. This cycling limits the heat dissipation of the regulator, protecting it from damage due to overheating.

Absolute Maximum Ratings

Symbol	Parameter	Rating	Unit
Vin	Input Voltage Range	-0.3 to +6	V
VBIAS	Input Voltage Range	-0.3 to +6	V
V _{EN}	Enable Voltage Range	-0.3 to +6	V
V _{PG}	Power-Good Pin Voltage Range	-0.3 to +6	V
IPG	PG Sink Current	0 to +1.5	mA
V _{FB}	Feedback Pin Voltage Range	-0.3 to +6	V
Vout	Output Voltage Range	-0.3 to (V _{IN} + 0.3) ≤ 6	V
PD	Continuous Total Power Dissipation	2.5	W
Тјмах	Maximum Junction Temperature	+150	°C
T _{STG}	Storage Junction Temperature Range	-65 to +150	°C

Recommended Operating Conditions

Symbol	Parameter	Rating	Unit
V _{IN}	Input voltage range	V _{OUT} +V _{DO} to 5.5	V
VBIAS	Bias pin voltage range	2.2 to 5.5	V
TA	Operating Ambient Temperature	-40 to +85	°C

Electrical Characteristics

 $V_{EN}=1.1V, V_{IN}=V_{OUT}+0.3V, V_{BIAS}=5.0V, C_{BIAS}=C_{IN}=1\mu F, C_{OUT}=10\mu F, I_{OUT}=50mA, T_{A}=-40^{\circ}C \text{ to } +85^{\circ}C, \text{ unless otherwise noted.}$ Typical values are at T_A=+25°C.

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
Input Voltage Range	V _{IN} ⁽¹⁾		Vout +V _{DO}		5.5	V
V _{BIAS} Voltage Range	V _{BIAS}		2.2		5.5	V
		V _{BIAS} Rising	1.2	1.6	1.9	V
Under-voltage Lock-out	Vuvlo	Hysteresis		0.2		
Internal Reference	VREF	T _A =+25°C		0.8		V
Output Voltage Range		VIN= 5V,IOU=1.5A,VBIAS=5V	V _{REF}		3.6	V
Output Accuracy	Vout	2.97V ≤V _{BIAS} ≤5.25V, V _{OUT} +1.62V≤V _{BIAS} , 50mA≤I _{OUT} ≤3.0A	-1.0		+1.0	%
Line Regulation	Regline	V _{OUT(NOM)} +0.3≤V _{IN} ≤5.5V		0.01		%/V
Las I Dan Jaffar	Dur	0mA≤I _{OUT} ≤50mA		0.005		%/mA
Load Regulation	Regload	50mA ≤I _{OUT} ≤3.0A		0.03		%/A
V _{IN} Dropout Voltage	Vdrop ⁽²⁾	Iout=3.0A, Vbias–Vout(nom)≥1.62V		135	230	mV
VBIAS Dropout Voltage	V DROP'-'	I _{OUT} =3.0A, V _{IN} =V _{OUT} +0.3V		1.15	1.5	V
Current Limit	I _{LIM}	Vout=80% xVout(NOM)	3.8	4.6	7	Α
VBIAS Current	IBIAS	0mA ≤I _{0∪T} ≤3.0A		1.3	2	mA
V _{BIAS} Shutdown Supply Current	Ishdn	Ven=0 V		0.3	2	μA
V _{IN} to V _{OUT} Ripple rejection	DODD	1kHz,I _{OUT} =1.5A, V _{IN} =1.5V,V _{OUT} =1.2V		80		dB
V _{BIAS} to V _{OUT} Ripple rejection	PSRR	10kHz, I _{OUT} =1.5А, V _{IN} =1.5V,V _{OUT} =1.2V		72		dB
Output Noise Voltage	ел ⁽³⁾	100 Hz to 100 kHz, Іоџт=3.0А		30 ж Vouт		µVrms
%V _{OUT} Droop During Load Transient	V _{trld} (3)	I _{OUT} =50mA to 3.0 A at 1 A/μs,C _{OUT} =10μF, V _{OUT} =1.2 V		±2		%Vout
Minimum Startup Time	ton	IOUT=1.5A		220		μs
Enable Input High Level	Venh		1.1		5.5	V
Enable Input Low Level	Venl		0		0.4	V
Enable Pin Hysteresis	Ven,hys			100		mV
Enable Pin Deglitch Time	t _{EN,DG}			20		μs

6

Electrical Characteristics(Continued)

 $V_{EN}=1.1V$, $V_{IN}=V_{OUT}+0.3V$, $V_{BIAS}=5.0V$, $C_{BIAS}=C_{IN}=1\mu$ F, $C_{OUT}=10\mu$ F, $I_{OUT}=50$ mA, $T_{A}=-40^{\circ}$ C to +85°C, unless otherwise noted. Typical values are at $T_{A}=+25^{\circ}$ C.

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
Enable Pin Current	I _{EN}	Ven=5V		0.3	1	μA
PG Threshold	Vth	Vout decreasing	86.5	90	93.5	%Vouт
PG Hysteresis	V _{HYS}			3		%Vouт
PG Output Low Voltage	V_{PGL}	I _{PG} =1mA (sinking),V _{OUT} <v<sub>TH</v<sub>			0.3	V
PG Leakage Current	I _{PG,LKG}	V _{PG} =5V,V _{OUT} >V _{TH}		0.03	1	μA
Thermal Shutdown Temperature	T _{SD} ⁽³⁾			+155		°C
Thermal Shutdown Released Temperature	T _{SR} ⁽³⁾			+125		°C

Notes:

1: The maximum input voltage should take into account the maximum power consumption (P_{D(MAX)}).The calculation formula is as follows:

$\mathbf{P}_{\mathsf{D}(\mathsf{MAX})} = (\mathbf{V}_{\mathsf{IN}(\mathsf{MAX})} - \mathbf{V}_{\mathsf{OUT}}) \times \mathbf{I}_{\mathsf{OUT}}$

The maximum power consumption of the circuit is 2500mW.

$V_{IN(MAX)} = 2500 \text{mW} / I_{OUT} + V_{OUT}$

For example:

If V_{OUT}= 1.2V, I_{OUT}=2500mA, The maximum input voltage is V_{IN(MAX)}=2500mW / 2500mA+1.2=2.2V

2: V_{DROP} FT test method: test the V_{OUT} voltage at V_{SET} + $V_{DROPMAX}$ with output current.

3: Guaranteed by design and characterization. not a FT item.

Application Circuits

Note*: $V_{OUT} = 0.8 \times (1+R1/R2)$,R3 should be from $10K\Omega$ to $1M\Omega$.

Typical Characteristics

9

Typical Characteristics(Continued)

$(V_{\text{OUT}}=1.2V, V_{\text{IN}}=1.5V, V_{\text{BIAS}}=5.0V, C_{\text{IN}}=C_{\text{BIAS}}=1\mu\text{F}, C_{\text{OUT}}=10\mu\text{F}, T_{\text{A}}=-40^{\circ}\text{C} \text{-+}85^{\circ}\text{C})$

Package Dimension ESOP8

Revision History and Checking Table

Version	Date	Revision Item	Modifier	Function & Spec Checking	Package & Tape Checking
0.0	2019-05-20	Preliminary Version, development stage	Chenh	Chenh	Liujy
1.0	2023-7-11	Official Version	Shibo	Chenh	Liujy