

Low Input Voltage 500mA LDO

General Description

The ET552XXY1B is a low input voltage 500mA LDO. The input voltage is as low as Min. 1.2V. The output voltage accuracy has been improved to ±2% and due to a built-in transistor with low on-resistance. It consists of a voltage reference unit, an error amplifier, a resistor-net for voltage setting, and a current limit circuits for over-current prevention.

The ET552XXY1B uses a type of outstanding CMOS process to minimize the supply current. A low on-resistance PMOS pass device is equipped for lower dropout voltage. ET552XXY1B also possess the CE function to save more energy and extend the battery life. The CE pin can switch the regulator to standby mode.

Features

Wide Input Voltage Range: 1.2V to 5V

Output Voltage Range: 0.6V~3.6V(Fixed V_{OUT})

Very Low IQ: 55µA

• Up to 500mA Load Current

Output Voltage Accuracy: ±2%

Dropout Voltage: Typ. 0.43V(500mA) @1.05V Output

Excellent Load/Line Transient Response

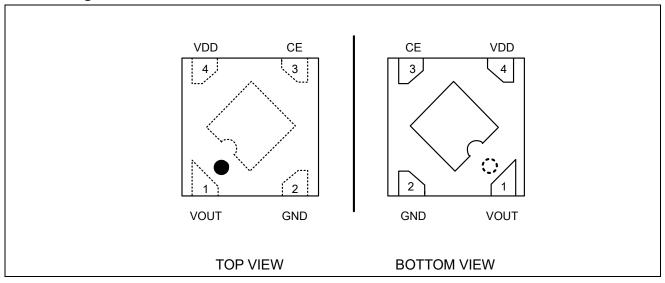
Line Regulation: 0.1%/V (typical)

• Built-in Fold Back Protection Circuit

- Built-in Constant Slope Circuit
- Built-in Auto-discharging Circuit
- Built-in Thermal Protection Circuit
- Package No. and MSL Level:

Part No.	Package	MSL
ET552XXY1B	DFN4(1×1)	Level 1

Applications


- Constant-Voltage Power Supply for Battery-powered Device
- Constant-Voltage Power Supply for TV, Notebook PC and Home Electric Appliance
- Constant-Voltage Power Supply for Portable Equipment

Device Information

ET 552 XX Y1 B

<u>X</u>	XX Output Voltage		<u>Y1</u> Package	Package <u>B</u> Auto-Discharging Function		
XX	Fixed Output Voltage,	Y1 DFN4(1×1)	R	Available		
	For example, 12 is 1.2V	1 1	DI 144(171)		Available	


Pin Configuration

Pin Function

Pin No.	Pin Name	Pin Function		
1	VOUT	Output Pin		
2	GND	Ground Pin		
3	CE	Chip Enable Pin, "H" Enable		
4	VDD	Input Pin		
-	Thermal Pad	Thermal pad for DFN4(1×1) package, connect to GND.		

Block Diagram

Functional Description

Input Capacitor

A $1\mu F$ ceramic capacitor is recommended to connect between V_{DD} and GND pins to decouple input power supply glitch and noise. The amount of the capacitance may be increased without limit. This input capacitor must be located as close as possible to the device to assure input stability and less noise. For PCB layout, a wide copper trace is required for both V_{DD} and GND.

Output Capacitor

An output capacitor is required for the stability of the LDO. The recommended output capacitance is $0.47\mu F$ to $10\mu F$ (usually $1\mu F$), Equivalent Series Resistance (ESR) is from $5m\Omega$ to $100m\Omega$. Ceramic capacitor is recommended, and temperature characteristics are X7R or X5R. Higher capacitance values help to improve load/line transient response. The output capacitance may be increased to keep low undershoot/overshoot. Place output capacitor as close as possible to V_{OUT} and GND pins.

CE Pin Operation

The ET552XXY1B is turned on by setting the CE pin to "H". The CE pin do not set it in floating status. When the CE pin is not used, connect the CE pin with V_{DD} to keep the LDO in operating mode.

Current Limit Protection

When output current of V_{OUT} pin is higher than current limit threshold, the current limit protection will be triggered and clamp the output current at a predesigned level to prevent over-current and thermal damage.

Auto Discharging

When the CE pin set to "L", the output circuit will be disable immediately, and the Auto-Discharging circuit will be turned on to discharge the electric charge on output capacitor, and decrease the voltage of V_{OUT} in very

short time.

Thermal Shutdown Protection

Thermal protection disables the output when the junction temperature rises to approximately +160°C, allowing the device to cool down. When the junction temperature reduces to approximately +140°C the output circuit is enabled again. Depending on power dissipation, thermal resistance, and ambient temperature, the thermal protection circuit may cycle on and off. This cycling limits the heat dissipation of the regulator, protecting it from damage due to overheating.

Absolute Maximum Ratings

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other condition beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Parameters	Rating	Unit
Input Voltage	-0.3 to 6.0	V
Input Voltage (CE Pin)	-0.3 to 6.0	٧
Output Voltage	-0.3 to V _{DD} +0.3	V
Maximum Load Current	500	mA
Maximum Power Consumption	600	mW
Operating Junction Temperature	-40 to 150	°C
Storage Temperature	-65 to 150	°C
Lead Temperature (Soldering, 10 sec)	300	°C

Recommended Operating Conditions

Symbol	Items	Rating	Unit
VIN	Input Voltage	1.2 to 5.0	V
Іоит	Output Current	0 to 500	mA
TA	Operating Ambient Temperature	-40 to 85	°C
CIN	Effective Input Ceramic Capacitor Value	0.47 to 10	μF
Соит	Effective Output Ceramic Capacitor Value	0.47 to 10	μF
ESR	Input and Output Capacitor Equivalent Series Resistance (ESR)	5 to 100	mΩ

Electrical Characteristics

(Unless otherwise noted, $V_{IN}=V_{OUT}+1V$, $T_A=25^{\circ}C$, unless otherwise stated, $C_{IN}=C_{OUT}=1\mu F$)

Symbol	Parameters	Conditions	Min	Тур	Max	Unit	
V _{IN} ⁽¹⁾	Operating Input Voltage Range		1.2		5.0	V	
		V _{ОUТ} = 0.6V, I _{ОUТ} = 500mA		700	900	mV	
		V _{OUT} = 0.6V, I _{OUT} = 300mA		400	600	mV	
		V _{OUT} = 0.85V, I _{OUT} = 500mA		600	825	mV	
		V _{OUT} = 0.85V, I _{OUT} = 300mA		360	495	mV	
		V _{OUT} = 0.9V, I _{OUT} = 500mA		600	825	mV	
V _{DROP} (2)	Dropout Voltage	$V_{OUT} = 0.9V, I_{OUT} = 300mA$		360	495	mV	
V DROP(=/	Dropout Voltage	V _{OUT} = 1.05V, I _{OUT} = 500mA		430	575	mV	
		V _{OUT} = 1.05V, I _{OUT} = 300mA		255	345	mV	
		V _{OUT} = 1.1V, I _{OUT} = 500mA		430	575	mV	
		V _{ОUТ} = 1.1V, I _{ОUТ} = 300mA		255	345	mV	
		V _{ОUТ} = 1.8V, I _{ОUТ} = 500mA		240	375	mV	
		V _{OUT} = 1.8V, I _{OUT} = 300mA		140	245	mV	
I _{Q_ON}	DC Supply Quiescent Current	Active mode: $V_{CE} = V_{IN}$ 30		55	70	μΑ	
lq off	DC Supply Shutdown Current	V _{CE} = 0V		0.1	2	μΑ	
		I _{OUT} = 1mA~500mA, T _A = 25°C	-2		2		
V _{OUT}	Output Voltage	$I_{OUT} = 1mA,$ $T_A = -40^{\circ}C^{\sim}85^{\circ}C$	-2.5		2.5	%	
Regline	Output Voltage Line Regulation	V _{OUT} +1V≤V _{IN} ≤5V, I _{OUT} = 10mA (ΔV _{OUT} /Δνιν/V _{OUT})		0.10	0.25	%/V	
Reg _{LOAD}	Output Voltage Load Regulation	I _{OUT} from 1mA to 500mA (ΔV _{OUT})		25	45	mV	
) / (3)	Line Transient (The absolute value of the output change)	I_{OUT} = 1mA, V_{IN} = V_{OUT} +1V to 5V in 10us, T_A =25°C		15	30	/	
V _{TRLN} (3)		I_{OUT} = 1mA, V_{IN} =5V to V_{OUT} +1V in 10us, T_A =25°C		15	30	mV	
V (3)	Load Transient	$V_{IN} = V_{OUT}+1V$, I_{OUT} from 1mA to 500mA in 10us, $T_A = 25$ °C		85	120		
V _{TRLD} ⁽³⁾	(The absolute value of the output change)	V_{IN} = V_{OUT} +1 V , I_{OUT} from 500mA to 1mA in 10us, T_A = 25°C		50	120	- mV	
Іоит	Output Current		500			mA	
I _{LMT}	Over Current Limit	V _{IN} = V _{OUT} +1V, T _A = 25°C	600	700	900	mA	
	•		•	•	•	•	

Electrical Characteristics(continues)

(Unless otherwise noted, $V_{IN}=V_{OUT}+1V$, $T_A=25^{\circ}C$, unless otherwise stated, $C_{IN}=C_{OUT}=1\mu F$)

Symbol	Parameters	Conditions	Min	Тур	Max	Unit
Ishort	Short Current Limit	V _{OUT} = 0V, T _A = 25°C	70	110	180	mA
PSRR ⁽³⁾	Power Supply Rejection Ratio	$f = 1kHz$, $C_{OUT} = 1\mu F$, $I_{OUT} = 20mA$, $V_{IN} = V_{OUT} + 1V$, $T_A = 25$ °C	50	80		dB
e _N ⁽³⁾	Output Noise	10Hz to 100kHz, $I_{OUT} = 30mA$, $C_{OUT} = 1\mu F$, $T_A = 25$ °C		40	70	μV _{RMS}
VENL	EN Low Threshold	V _{IN} =1.2 to 5V			0.4	V
VENH	EN High Threshold	V _{IN} =1.2 to 5V	0.9			V
ICE	CE Pull-down Current	$V_{IN} = V_{CE} = V_{OUT} + 1V,$ $T_A = 25^{\circ}C$ 0.2		0.7	1	μΑ
RLOW	Output resistance of auto discharge at off state	$V_{EN} = 0V$, $V_{IN} = 2V$, $I_{OUT} = 10mA$	20	40	80	Ω
T _{TSD} ⁽⁴⁾	Thermal Shutdown Temperature	Junction Temperature		160		°C
T _{TSR} ⁽⁴⁾	Thermal Shutdown Temperature, released	Junction Temperature		140		°C
НВМ	ESD	Reference: ESDA/JEDEC JS-001-2017	±4000			V
CDM	Reference:		±1500			V

Note1: Here V_{IN} means internal circuit can work normal. If V_{IN} <V_{OUT}, Output voltage follow V_{IN}(I_{OUT}=1mA), circuit is safety. The maximum input voltage should take into account the maximum power consumption (PD(max)). The calculation formula is as follows:

 $PD_{(MAX)} = (V_{IN(MAX)} - V_{OUT}) * I_{OUT}$

The maximum power consumption of the circuit is 600mW.

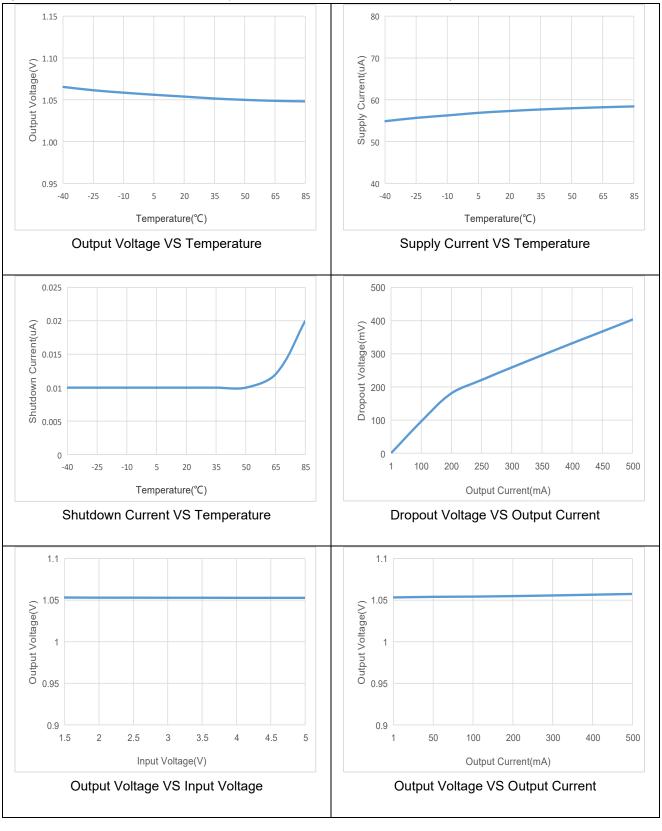
 $V_{IN(MAX)}$ =600mW/ I_{OUT} + V_{OUT}

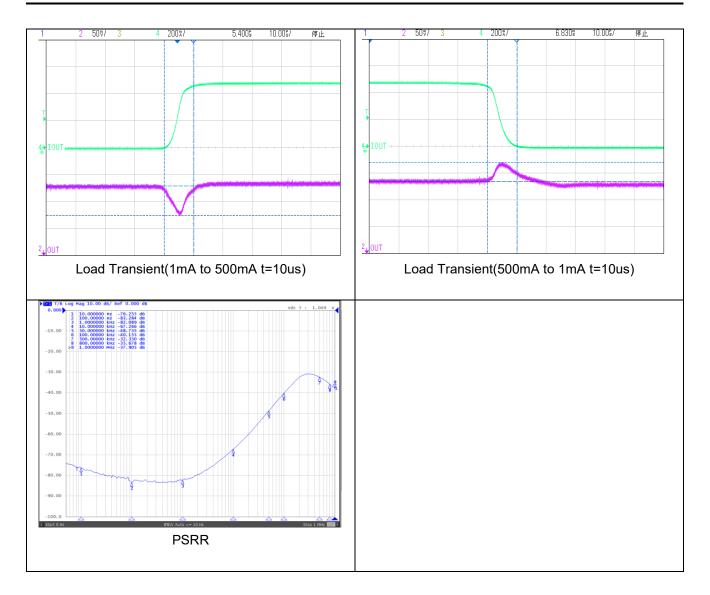
For example:

If I_{OUT} =500mA, V_{OUT} =1.05V, the maximum input voltage is V_{IN} (max)=600mW/500mA+1.05=2.25V.

6

Note2: V_{DROP} list I_{OUT} = 300mA&500mA here.

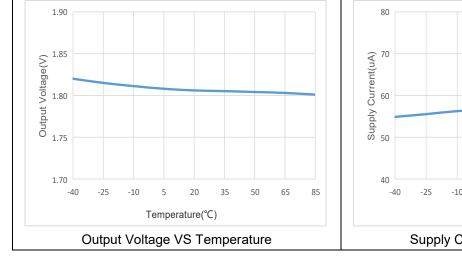

Note3: Guaranteed by design and characterization. not a FT item.

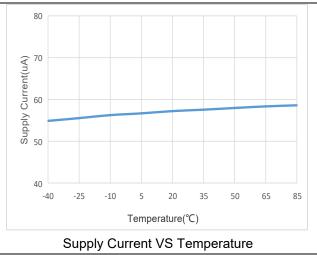

Note4: Guaranteed by design and CP test. Not a FT item.

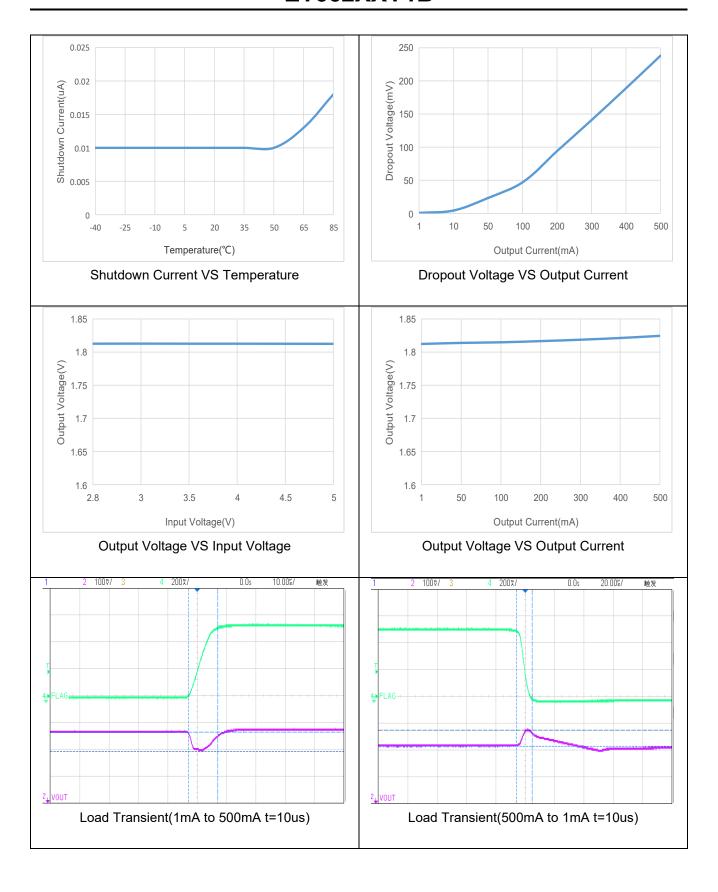
Typical Characteristics

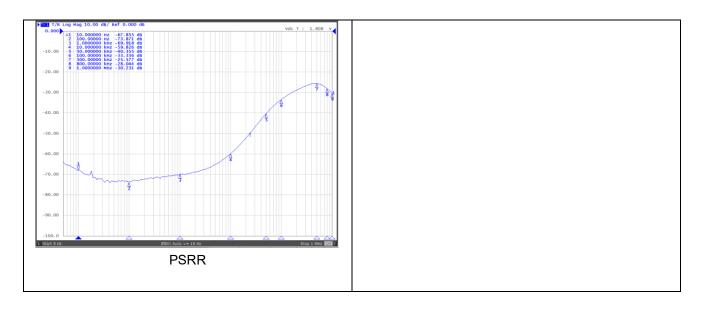
(1) VOLTAGE VERSION 1.05 V

(V_{OUT} =1.05V, V_{IN} =2.05V, C_{IN} = C_{OUT} =1 μ F, T_A =25°C, unless otherwise stated)

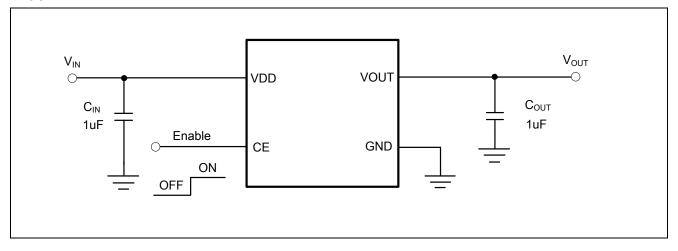


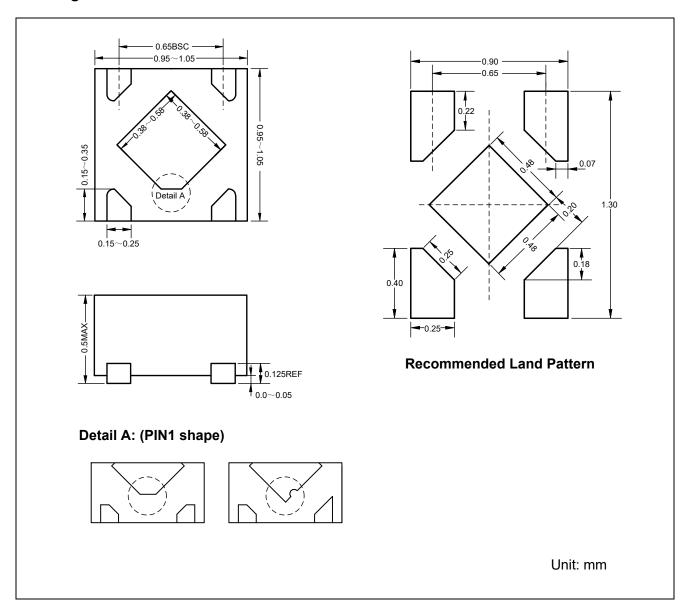


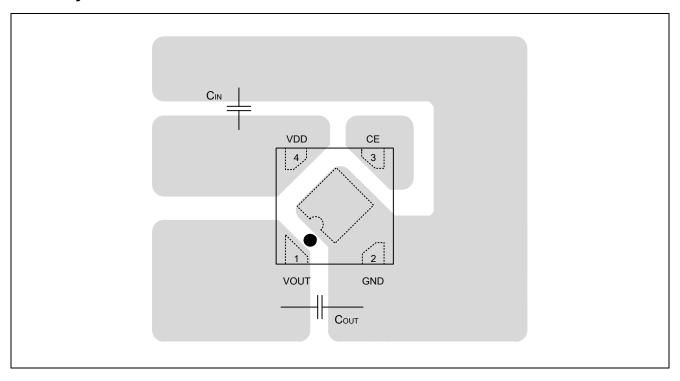

Typical Characteristics

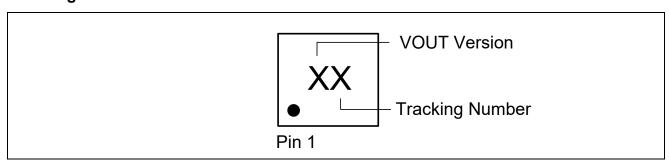

(2) VOLTAGE VERSION 1.8 V

(Vout=1.8V, Vin=2.8V, Cin=Cout=1µF, Ta=25°C, unless otherwise stated)






Application Circuits


Package Dimension

PCB Layout Guide

Marking

Revision History and Checking Table

Version	Date	Revision Item	Modifier	Function & Spec Checking	Package & Tape Checking
1.0	2019-1-31	Preliminary Version	Liu Yi Guo	Liu Yi Guo	Zhujl
1.1	2019-5-10	Update recommend layout	Shibo	Shibo	Liujy
1.2	2022-11-9	Update recommend layout	Yangzhi	Liu Yi Guo	Zhujl
1.3	2023-10-10	Update package picture	Shibo	Shibo	Liujy