# 300mA Ultra-Low-Noise LDO for RF and Analog Circuits

#### **General Description**

The ET531XX family of low-dropout (LDO), low-power linear regulators offers very high power supply rejection ratio (PSRR) while maintaining very low 15µA ground current, suitable for RF applications. The family uses an advanced CMOS process and a PMOSFET pass device to achieve fast start-up, very low noise, excellent transient response, and excellent PSRR performance.

The ET531XX is stable with a  $1.0\mu$ F ceramic output capacitor, and uses a precision voltage reference and feedback loop to achieve a worst-case accuracy of 2% over all load, line, process, and temperature variations. It is offered in a small DFN4 or SOT23-5 package, which is ideal for small form factor portable equipment such as wireless handsets and PDAs.

#### Features

- Wide Input Voltage Range: 1.9V to 5.5V
- Output Voltage Range:1.2V~5.0V(1.2V/1.5V/1.8V/2.5V/2.8V/3.0V/3.1V/3.3V and etc)
- Up to 300mA Load Current
- Other Output Voltage Options Available on Request
- Very Low IQ: 15µA
- Low Dropout: 180mV typical@1.8V
- Very High PSRR: 80db at 1KHz
- Ultra Low Noise: 10uVrms
- Excellent Load/Line Transient Response
- Excellent Load/Line Regulation
- With Auto Discharge Function
- Package Information:

| Part No.  | Package    | MSL     |
|-----------|------------|---------|
| ET531XXYB | DFN4 (1×1) | Level 1 |
| ET531XXB  | SOT23-5    | Level 3 |

### Applications

- Smart Phones and Cellular Phones
- PDAs
- MP3/MP4 Player
- Digital Still Cameras
- Portable instrument

## **Device Information**

### ET 531 XX X B

| XX Output Voltage |                                     |                | <u>X</u> Package |           | <b><u>B</u></b> Auto-Discharging Function |                  |  |
|-------------------|-------------------------------------|----------------|------------------|-----------|-------------------------------------------|------------------|--|
|                   | ~                                   | Output Voltage | Y                | DFN4(1×1) | D                                         | Auto-discharging |  |
| XX                | For example, 18 is –<br>1.8V output | /              | SOT23-5          | В         | available                                 |                  |  |

## **Pin Configuration**



## **Pin Function**

| Pin No. |         | Pin Name  | Pin Function                                                                   |  |  |
|---------|---------|-----------|--------------------------------------------------------------------------------|--|--|
| DFN4    | SOT23-5 | Pin Name  | PIN Function                                                                   |  |  |
|         |         |           | Output pin. A $1\mu$ F low-ESR capacitor should be connected to this pin to    |  |  |
| 1       | 5       | OUT       | ground. An internal 50 $\Omega$ (typical) pull-down resistor prevents a charge |  |  |
|         |         |           | remaining on OUT when the regulator is in the shutdown mode.                   |  |  |
| 2       | 2       | GND       | Ground                                                                         |  |  |
| 3       | 3       | EN        | Enable control input, active high. Do not leave EN floating                    |  |  |
|         |         | 1 IN      | Supply input pin. Must be closely decoupled to GND with a $1\mu F$ or          |  |  |
| 4 1     |         |           | greater ceramic capacitor                                                      |  |  |
| Ть      |         | Thermal   | Thermal pad for DFN4(1×1) package, connect to GND or leave                     |  |  |
| -       | - 4     |           | floating. Do not connect to any potential other than GND                       |  |  |
|         |         | Pad or NC | NC for SOT23-5 no connection.                                                  |  |  |

# ET531XX

## **Block Diagram**



### **Functional Description**

### Input Capacitor

A  $1\mu$ F ceramic capacitor is recommended to connect between IN and GND pins to decouple input power supply glitch and noise. The amount of the capacitance may be increased without limit. This input capacitor must be located as close as possible to the device to assure input stability and less noise. For PCB layout, a wide copper trace is required for both IN and GND. The input capacitor should be at least equal to, or greater than, the output capacitor for good load transient performance.

### **Output Capacitor**

An output capacitor is required for the stability of the LDO. The recommended output capacitance is from  $1\mu$ F to  $10\mu$ F, Equivalent Series Resistance (ESR) is from  $5m\Omega$  to  $100m\Omega$ , and temperature characteristics are X7R or X5R. Higher capacitance values help to improve load/line transient response. The output capacitance may be increased to keep low undershoot/overshoot. Place output capacitor as close as possible to OUT and GND pins. With a reasonable PCB layout, the single  $1\mu$ F ceramic output capacitor can be placed up to 10cm away from the ET531XX device.

### **ON/OFF** Input Operation

The ET531XX EN pin is internally held low by a 1M $\Omega$  resistor to GND. The ET531XX is turned on by setting the EN pin higher than V<sub>IH</sub> threshold, and is turned off by pulling it lower than V<sub>IL</sub> threshold. If this feature is not used, the EN pin should be tied to IN pin to keep the regulator output on at all time.

#### High PSRR and Low Noise

The ET531XX, with PSRR of 80dB at 1KHz, is suitable for most of these applications that require high PSRR and low noise.

#### Output Automatic Discharge

The ET531XX output employs an internal 50 $\Omega$  (typical) pull-down resistance to discharge the output when the EN pin is low, and the device is disabled.

#### Remote Output Capacitor Placement

The ET531XX requires at least a  $1\mu$ F capacitor at the OUT pin, but there are no strict requirements about the location of the capacitor in regards the OUT pin. In practical designs, the output capacitor may be located up to 10cm away from the LDO.

#### Fast Transient Response

The ET531XX's fast transient response from 0 to 300mA provides stable voltage supply for fast DSP and GSM chipset with fast changing load.

#### Low Quiescent Current

The ET531XX, consuming only 15µA quiescent current, provides great power saving in portable and low power applications.

#### Minimum Operating Input Voltage (VIN)

The ET531XX does not include any dedicated UVLO circuitry. The ET531XX internal circuitry is not fully functional until VIN is at least 1.9V. The output voltage is not regulated until VIN has reached at least the greater of 1.9V or ( $V_{OUT} + V_{DROP}$ ).

#### **Current Limit Protection**

When output current at the OUT pin is higher than current limit threshold or the OUT pin is short-circuiting to GND, the current limit protection will be triggered and clamp the output current to approximately 500mA to prevent over-current and to protect the regulator from damage due to overheating.

#### Thermal Overload Protection

Thermal shutdown disables the output when the junction temperature rises to approximately 155°C which allows the device to cool. When the junction temperature cools to approximately 140°C, the output circuitry enables. Based on power dissipation, thermal resistance, and ambient temperature, the thermal protection circuit may cycle on and off. This thermal cycling limits the dissipation of the regulator and protects it from damage as a result of overheating.

The thermal shutdown circuitry of the ET531XX has been designed to protect against temporary thermal overload conditions. The TSD circuitry was not intended to replace proper heat-sinking. Continuously running the ET531XX device into thermal shutdown may degrade device reliability

## Absolute Maximum Ratings

| Symbol            | Parameters (Items)                              | Value                        | Unit |
|-------------------|-------------------------------------------------|------------------------------|------|
| V <sub>IN</sub>   | IN Voltage                                      | -0.3 to 6                    | V    |
| $V_{\text{EN}}$   | Input Voltage (EN Pin)                          | -0.3 to 6                    | V    |
| V <sub>OUT</sub>  | Output Voltage                                  | -0.3 to V <sub>IN</sub> +0.3 | V    |
| PD                | Maximum Power Consumption <sup>(1)</sup>        | 600                          | mW   |
| МАХ               | Maximum Load Current                            | 300                          | mA   |
| TJ                | Operating Junction Temperature                  | -40 to 150                   | °C   |
| Tstg              | Storage Temperature                             | -65 to 150                   | °C   |
| T <sub>SLOD</sub> | Lead Temperature (Soldering, 10 sec)            | 300                          | °C   |
|                   | Human Body Model per ESDA/JEDEC JS-001-2017     | ±4000                        | V    |
| ESD               | Charged Device Model per ESDA/JEDEC JS-002-2014 | ±1500                        | V    |

*Note (1)*: Rating at mounting on a board (PCB board dimension: 40mm x 40mm (4layer), copper: 1OZ).

## **Recommended Operating Conditions**

| Symbol | Parameters                                                    | Rating     | Unit |
|--------|---------------------------------------------------------------|------------|------|
| Vin    | Input Voltage                                                 | 1.9 to 5.5 | V    |
| Іоит   | Output Current                                                | 0 to 300   | mA   |
| TA     | Operating Ambient Temperature                                 | -40 to 85  | °C   |
| CIN    | Effective Input Ceramic Capacitor Value                       | 0.47 to 10 | μF   |
| Соит   | Effective Output Ceramic Capacitor Value                      | 0.47 to 10 | μF   |
| ESR    | Input and Output Capacitor Equivalent Series Resistance (ESR) | 5 to 100   | mΩ   |

## **Electrical Characteristics**

( $V_{IN} = V_{OUT} + 1V$ ,  $V_{EN} = 1.2V$ ,  $I_{OUT} = 1mA$ ,  $C_{IN} = 1\mu$ F,  $C_{OUT} = 1\mu$ F,  $T_A = 25^{\circ}$ C, unless otherwise stated)

| Symbol              | Parameters                          | Parameters Conditions                                                                    |     | Тур  | Мах        | Unit              |
|---------------------|-------------------------------------|------------------------------------------------------------------------------------------|-----|------|------------|-------------------|
| VIN                 | Input Voltage Range                 |                                                                                          | 1.9 |      | 5.5        | V                 |
| Vout                | Output Voltage Range                | 1.2                                                                                      |     |      | 5.0        | V                 |
|                     | Output Voltage                      | VIN=(V <sub>OUT(NOM)</sub> +1V) to 5.5V<br>I <sub>OUT</sub> =1mA to 300mA                |     |      | 2          | %                 |
| ΔVουτ               | Tolerance                           |                                                                                          |     |      |            |                   |
| <b>Av</b> 001       | Line Regulation                     | $V_{IN}=(V_{OUT}+1V)$ to 5.5V, $I_{OUT}=1mA$                                             |     | 0.02 |            | %/V               |
|                     | Load Regulation                     | I <sub>OUT</sub> =1mA to 300mA                                                           |     | 15   | 40         | mV                |
| LOAD                | Load Current                        |                                                                                          | 300 |      |            | mA                |
| IQ_OFF              | Input Shutdown<br>Quiescent Current | V <sub>EN</sub> =0V                                                                      |     | 0.2  | 1          | uA                |
|                     |                                     | V <sub>EN</sub> =1.2V, V <sub>IN</sub> =V <sub>OUT</sub> +1V<br>I <sub>OUT</sub> = 0mA   |     | 15   | 25         | uA                |
| IQ_0N               | Input Quiescent<br>Current /Channel | V <sub>EN</sub> =1.2V, V <sub>IN</sub> =V <sub>OUT</sub> +1V<br>I <sub>OUT</sub> = 300mA |     | 250  | 425        | uA                |
|                     |                                     | Vout=1.2V, Iout=300mA                                                                    |     |      | 700        | mV                |
|                     | Dropout Voltage                     | Vout=1.8V,Iout=300mA                                                                     |     | 180  |            | mV                |
| Vdrop               |                                     | Vout=2.8V,Iout=300mA                                                                     |     | 135  |            | mV                |
|                     |                                     | Vout=3.3V,Iout=300mA                                                                     |     | 110  |            | mV                |
| ILIMIT              | Current Limit                       | R <sub>LOAD</sub> =1Ω, T <sub>A</sub> =25°C                                              | 400 | 600  | 1000       | mA                |
| ISHORT              | Short Current Limit                 | V <sub>OUT</sub> =0V, T <sub>A</sub> =25°C                                               |     | 60   |            | mA                |
|                     |                                     | f=100 Hz, Iоυт=20mA                                                                      |     | 80   |            | dB                |
| PSRR <sup>(2)</sup> | Power Supply                        | f=1 kHz, lou⊤=20mA                                                                       |     | 80   |            | dB                |
| PSRR                | Rejection Ratio                     | f=10 kHz, Iоυт=20mA                                                                      |     | 65   |            | dB                |
|                     |                                     | f=100 kHz, lout=20mA                                                                     |     | 40   |            | dB                |
| (2)                 |                                     | BW=10 Hz to 100 kHz, I <sub>OUT</sub> =1mA                                               |     | 10   |            | uV <sub>RMS</sub> |
| en <sup>(2)</sup>   | Output Noise Voltage                | BW=10 Hz to 100 kHz, I <sub>OUT</sub> =300mA                                             |     | 6.5  |            | uV <sub>RMS</sub> |
| RLOW                | Output Discharge<br>FET Rdson       | V <sub>EN</sub> =0V, I <sub>OUT</sub> =10mA                                              |     | 50   |            | Ω                 |
| VIL                 | EN Input Logic                      | V <sub>IN</sub> = 1.9V to 5.5V, V <sub>EN</sub> falling<br>until the output is disabled  |     |      | 0.4        | V                 |
| V IL                | Low Voltage                         |                                                                                          |     |      | <u>, т</u> | v                 |
| VIH                 | EN Input Logic<br>High Voltage      | V <sub>IN</sub> = 1.9 V to 5.5V, V <sub>EN</sub> rising<br>until the output is enabled   | 1.2 |      |            | V                 |
|                     | EN Input Leakage                    | age V <sub>IN</sub> =5.5V, V <sub>EN</sub> = 0V                                          |     | 0.01 | 1          | uA                |
| IEN                 | current                             | V <sub>IN</sub> =5.5V, V <sub>EN</sub> = 5.5V                                            |     | 5.5  |            | uA                |

## **Electrical Characteristics (Continued)**

 $(V_{IN} = V_{OUT} + 1V, V_{EN} = 1.2V, I_{OUT} = 1mA, C_{IN} = 1\mu F, C_{OUT} = 1\mu F, T_A = 25^{\circ}C$ , unless otherwise stated)

| Symbol                    | Parameters Conditions                         |                                                                                              | Min | Тур | Max | Unit |  |  |  |
|---------------------------|-----------------------------------------------|----------------------------------------------------------------------------------------------|-----|-----|-----|------|--|--|--|
| TRANSIENT CHARACTERISTICS |                                               |                                                                                              |     |     |     |      |  |  |  |
|                           |                                               | V <sub>IN</sub> =(V <sub>OUT</sub> +1V) to (V <sub>OUT</sub> +1.6V)<br>in 10us               |     | 10  |     | mV   |  |  |  |
| ΔV <sub>OUT</sub> (2)     | Line transient                                | V <sub>IN</sub> =(V <sub>OUT</sub> +1.6V) to (V <sub>OUT</sub> +1V)<br>in 10us               |     | 10  |     | mV   |  |  |  |
| ΔVOUT(-)                  | Load transient                                | Iout=1mA to 300mA in 10us                                                                    |     | 30  |     | mV   |  |  |  |
|                           |                                               | Iout=300mA to 1mA in 10us                                                                    |     | 30  |     | mV   |  |  |  |
|                           | Overshoot on<br>start-up                      | Stated as percentage<br>of Vout(NOM)                                                         |     |     | 5   | %    |  |  |  |
| t <sub>ON</sub>           | Output Turn-on Time                           | From V <sub>EN</sub> > V <sub>IH</sub> to<br>V <sub>OUT</sub> = 95% of V <sub>OUT(NOM)</sub> |     | 70  | 150 | us   |  |  |  |
| TSHDN                     | Thermal Shutdown<br>threshold <sup>(2)</sup>  | TJ rising                                                                                    |     | 160 |     | °C   |  |  |  |
| Тнуѕ                      | Thermal Shutdown<br>Hysteresis <sup>(2)</sup> | TJ falling from shutdown                                                                     |     | 15  |     | °C   |  |  |  |

Note (2). Guaranteed by design and characterization. not a FT item.

## **Typical Characteristics**

#### **VOLTAGE VERSION 1.8V**

Note: Typical Characteristics are intended to be used as reference data; they are not guaranteed.



(VIN =2.8V, IOUT=1mA, CIN =Ceramic 1.0µF, COUT=Ceramic 1.0µF)



## **Application Circuits**



## PCB Layout Guide



## Package Dimension





# ET531XX

#### SOT23-5



## **Tape Information**



SOT23-5



## **Revision History and Checking Table**

| Version | Date       | Revision Item          | Modifier Function & Spec<br>Checking |            | Package & Tape<br>Checking |
|---------|------------|------------------------|--------------------------------------|------------|----------------------------|
| 1.0     | 2018-06-27 | Original Version       | Liu Yi Guo                           | Liu Yi Guo | Liu Jia Ying               |
| 1.1     | 2018-12-12 | Update EC table        | Liu Yi Guo                           | Liu Yi Guo | Liu Jia Ying               |
| 1.2     | 2022-08-24 | Update Typeset         | Yang Xiao Xu                         | Liu Yi Guo | Yang Xiao Xu               |
| 1.3     | 2023-10-11 | Update package picture | Shibo                                | Liu Yi Guo | Yang Xiao Xu               |