High-Precision, Rail-to-Rail I/O Operational Amplifier

General Description

The ET85511(single) and ET85512(dual) are high-precision, low-quiescent current amplifier which can offer high input impedance and rail-to-rail input and output. The amplifier uses auto-zeroing techniques to provide low offset voltage(2 µV type) and near zero-drift over time and temperature.

Either single or dual supplies can be used in the range from 2.3V to 5.5V (+1.15V to +2.75V).

The ET85511 is available in SC70-5, SOT23-5, MSOP8 and SOP8 packages.

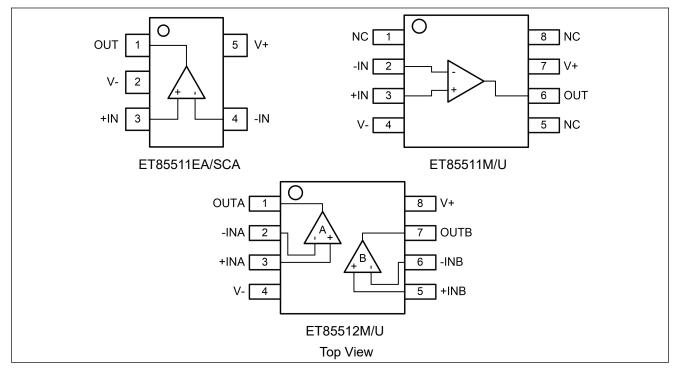
The ET85512 is available in MSOP8 and SOP8 packages. All versions are specified for operation from -40°C to +125°C.

Features

- Low Offset Voltage: 2 µV(Type)
- Zero-Drift: 0.03 µV/°C
- Low Noise: 18 nV/√Hz
 - ➢ 0.1Hz to 10Hz Noise: 0.35 µVpp
- Excellent DC Precision:
 - ➢ Open-Loop Gain: 135dB
 - > PSRR: 120dB
 - > CMRR:120dB
- Gain Bandwidth: 2 MHz
- Quiescent Current: 220 µA(Type)
- Supply Range: +1.15V to +2.75V
- Rail-to-Rail Input and Output

Applications

- Bridge Amplifier
- Strain Gauges
- Transducer Applications
- Temperature Measurement
- Electronic Scales
- Medical instrumentation
- Resistance Temperature Detectors
- Handheld Test Equipment


Device information

ET 8551 X₁ X₂

$\underline{X}_{(1)}$ Channel number			
1 Single channel			
2 Dual channel			

<u>X</u> ② Package			
М	SOP8		
U	MSOP8		
EA	SOT23-5		
SCA	SC70-5		

Pin Configuration

Pin Function

	Pin Number	Symbol	Descriptions
	1	OUT	Output
ET85511EA	2	V-	Negative supply
ET85511SCA	3	+IN	Non-inverting input
	4	-IN	Inverting input
	5	V+	Positive supply

	Pin Number	Symbol	Descriptions
-	1	NC	/
-	2	-IN	Inverting input
	3	+IN	Non-inverting input
ET85511M ET85511U	4	V-	Negative supply
E1055110	5	NC	1
	6	OUT	Output
	7	V+	Positive supply
	8	NC	1

	Pin Number	Symbol	Descriptions
	1	OUTA	Output
	2	-INA	Inverting input
FTOFFAOL	3	+INA	Non-inverting input
ET85512M ET85512U	4	V-	Negative supply
E1055120	5	+INB	Non-inverting input
	6	-INB	Inverting input
	7	OUTB	Output
	8	V+	Positive supply

Absolute Maximum Ratings

Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are only stress ratings, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating conditions are not implied. Exposure to absolute maximum rated conditions for extended periods may affect device reliability.

Symbol	Parameter	Value	Unit	
Vs	Supply Voltage:(V+) - (V-)	0 to 6	V	
VIC	Input Voltage (V-)-0.5 to (V+)+0.5			
VID	Differential Input Voltage ±5			
	ESD (Human Body Model)	8	kV	
V _{ESD}	ESD (Charged-Device Model)	2	kV	
T _{STG}	Storage Temperature Range	-65 to +150	°C	
T _{J(MAX)}	Max Junction Temperature Range	+150	°C	

Recommended Operating Conditions

Symbol	Parameter	Value	Unit
Vs	Supply Voltage: (V+) - (V-)	2.3(±1.15) ~ 5.5(±2.75)	V
T _A	Operating Temperature Range	-40 ~ +125	°C

Electrical Characteristics

 V_S = +5 V, T_A = 25°C, R_L = 10 k Ω connected to $V_S/2$, and V_{CM} = V_{OUT} = $V_S/2$ (unless otherwise noted)

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
INPUT C	HARACTERISTICS					
Vos	Input offset voltage			2	10	μV
ΔV _{os} /ΔT	Input offset voltage vs temperature	$T_{A} = -40^{\circ}C$ to $125^{\circ}C$		0.03		µV/°C
I _B	Input bias current	V _{CM} =V _S /2		±100	±600	pА
los	Input offset current			±100	±600	pА
	Input offset voltage	V _S = +2.3V to +5.5V	100	120		dB
PSRR	vs power supply	T _A = -40°C to 125°C	90			dB
V _{CM}	Common-mode voltage range	$T_A = -40^{\circ}C$ to $125^{\circ}C$	V-		V+	V
01400	Common-Mode	$V- < V_{CM} < V+$	100	120		dB
CMRR	Rejection Ratio	T _A = -40°C to 125°C	90			dB
^	Open-loop	$(V-) + 0.3 < V_0 < (V+) - 0.3$	120	135		dB
A _{OL}	voltage gain	T _A = -40°C to 125°C	110			dB
NOISE			-		1	
En	Input voltage noise (peak to peak)	<i>f</i> = 0.1 Hz to 10 Hz		350		nV _{PP}
en	Input voltage noise density	<i>f</i> = 1 kHz		18		nV/√Hz
DYNAMI	C PERFORMANCE			1		
GBP	Gain-bandwidth product			2		MHz
SR	Slew rate	G =±1		1		V/µs
	Overload					
t _{OR}	recovery time	V _{IN} × gain = V _S		50		μs
OUTPUT	CHARACTERISTICS		1	1	1	1
	Voltage output swing	R _L = 10 kΩ		5	12	
Vo	from supply rail	T _A = -40°C to 125°C			18	– mV
		Source Current	60	70		
ISOURCE		T _A = -40°C to 125°C	55			
	Output Current	Sink Current	55	60		– mA
ISINK		$T_A = -40^{\circ}C$ to $125^{\circ}C$	50			1
POWER	SUPPLY					
	Quiescent current			220	280	
lq	per amplifier	T _A = -40°C to 125°C			350	- μΑ

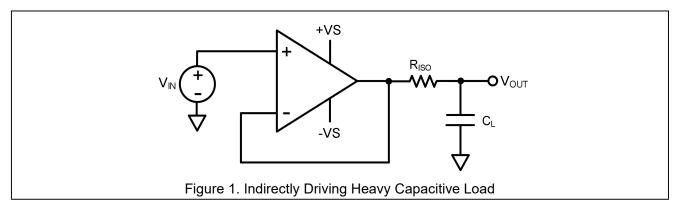
Electrical Characteristics (Continued)

 V_{S} = +2.7 V, T_{A} = 25°C, R_{L} = 10 k Ω connected to $V_{S}/2$, and V_{CM} = V_{OUT} = $V_{S}/2$ (unless otherwise noted)

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
	HARACTERISTICS			, , , , , , , , , , , , , , , , , , , 		
Vos	Input offset voltage			4	15	μV
ΔV _{os} /ΔT	Input offset voltage vs temperature	T _A = -40°C to 125°C		0.03		µV/°C
IB	Input bias current	V _{CM} =V _S /2		±100	±500	pА
los	Input offset current			±100	±500	pА
PSRR	Input offset voltage	V _S = +2.3V to +5.5V	100	120		dB
PORR	vs power supply	T _A = -40°C to 125°C	90			dB
V _{CM}	Common-mode voltage range	T _A = -40°C to 125°C	V-		V+	V
	Common-Mode	$V- < V_{CM} < V+$	100	120		dB
CMRR	Rejection Ratio	T _A = -40°C to 125°C	90	110		dB
٨	Open-loop	$(V-) + 0.3 < V_0 < (V+) - 0.3$	110	135		dB
A _{OL}	voltage gain	T _A = -40°C to 125°C	100			dB
NOISE						•
En	Input voltage noise (peak to peak)	<i>f</i> = 0.1 Hz to 10 Hz		380		nV _{PP}
en	Input voltage noise density	<i>f</i> = 1 kHz		20		nV/√Hz
DYNAMI	C PERFORMANCE					
GBP	Gain-bandwidth product			2		MHz
SR	Slew rate	G =±1		0.8		V/µs
t _{OR}	Overload	V _{IN} × gain = V _S		50		
UR	recovery time	VIN A gain – VS		50		μs
OUTPUT	CHARACTERISTICS			1	1	
Vo	Voltage output swing	R _L = 10 kΩ		4	12	mV
۷Ü	from supply rail	$T_A = -40^{\circ}C$ to $125^{\circ}C$			18	
ISOURCE		Source Current	15	20		
ISOURCE	Output Current	T _A = -40°C to 125°C	12			mA
		Sink Current	15	20		
Isink		$T_A = -40^{\circ}C$ to $125^{\circ}C$	12			
POWER	SUPPLY					
	Quiescent current			210	270	
lq	per amplifier	T _A = -40°C to 125°C			350	μA

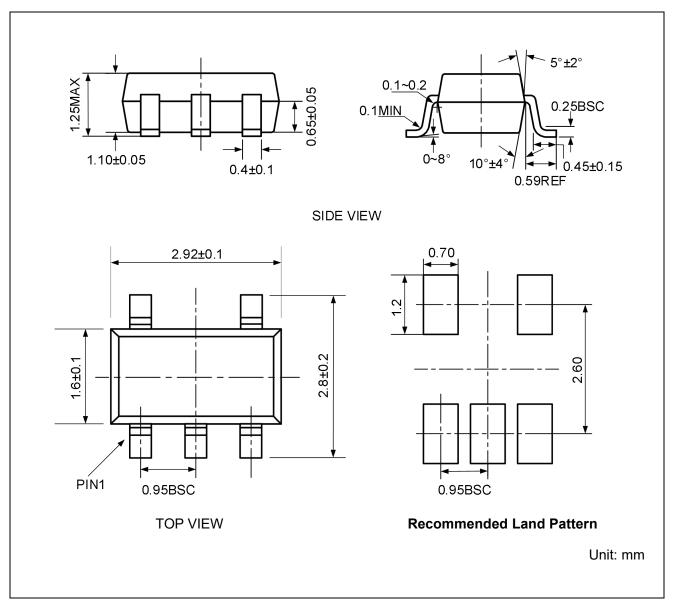
Functional Description

Application Information

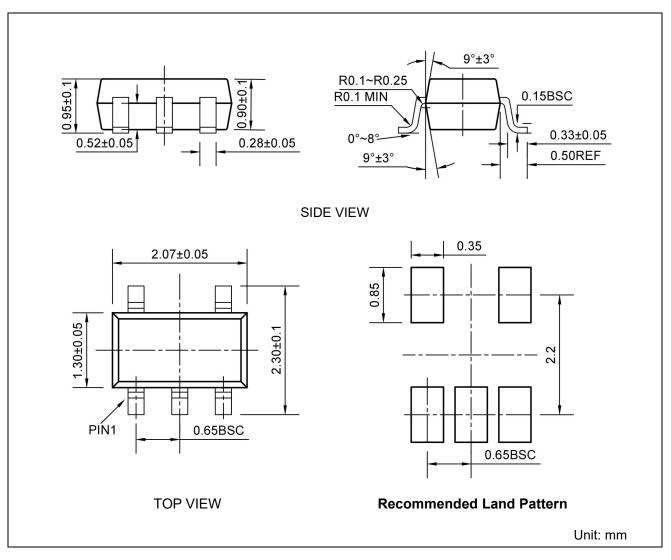

The ET8551X operational amplifier combines precision offset and drift with excellent overall performance, making it ideal for many precision applications. The precision offset drift of only 0.03 μ V/°C provides stability over the entire temperature range. In addition, the device pairs excellent CMRR, PSRR, and AOL dc performance with outstanding low-noise operation. As with all amplifiers, applications with noisy or high-impedance power supplies require decoupling capacitors close to the device pins.in most cases, 0.1 uF capacitors are adequate.

Operating Characteristics

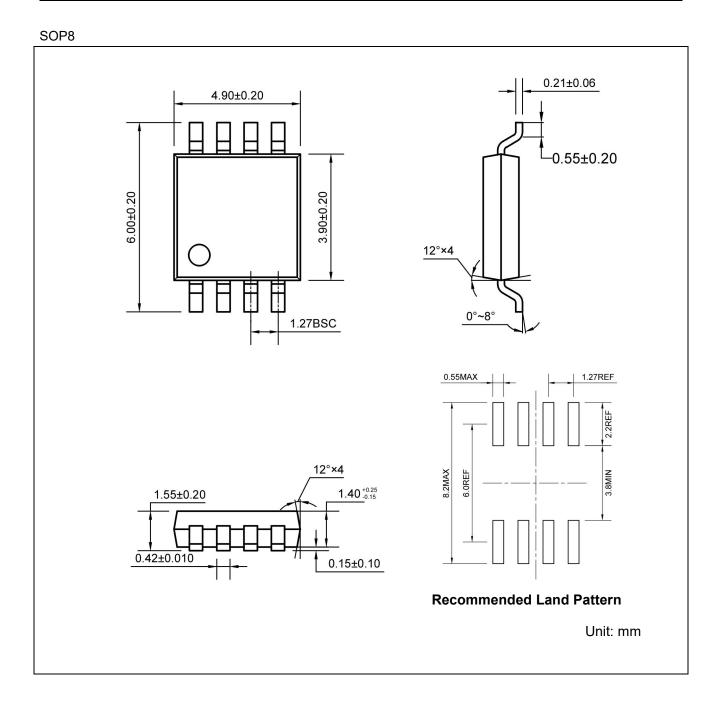
The ET8551X is specified for operation from 2.3 V to 5.5 V(\pm 1.15 V to \pm 2.75 V). Many specifications apply from -40°C to +125°C.


Capacitive Load and Stability

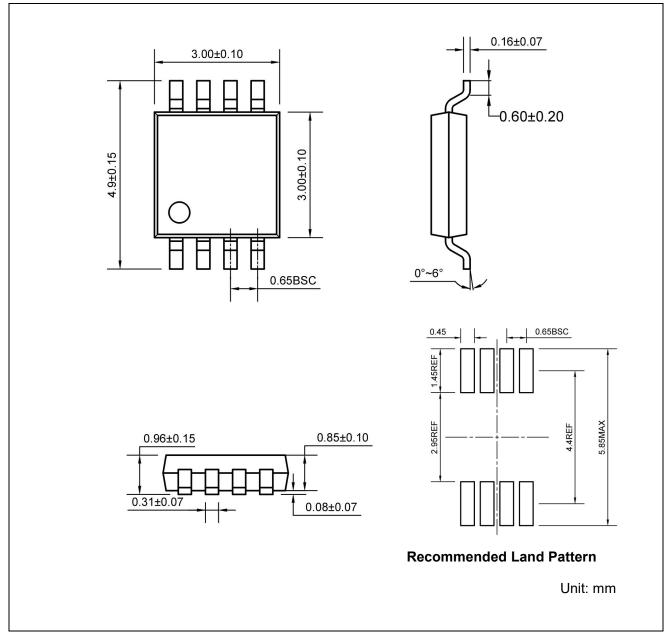
The unity-gain follower (buffer) is the most sensitive configuration to capacitive loading. Direct capacitive loading reduces the phase margin of amplifiers and this results in ringing or even oscillation. Applications that require greater capacitive drive capability should use an isolation resistor between the output and the capacitive load like the circuit in Figure 1. The isolation resistor R_{ISO} and the load capacitor C_L , form a zero to increase stability. The bigger the R_{ISO} resistor value, the more stable Vout will be. Note that this method results in a loss of gain accuracy because R_{ISO} forms a voltage divider with the R_{L} .


Package Dimension

SOT23-5



ET8551X



ET8551X

ET8551X

MSOP8

Revision History and Checking Table

Version	Date	Revision Item	Modifier	Function & Spec Checking	Package & Tape Checking
0.0	2025-04-02	Preliminary Version	Huyt	Wangxx	Liujy